The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Biomaterials. 2021 Mar;270:120683. doi: 10.1016/j.biomaterials.2021.120683. Epub 2021 Jan 25.
The human bone marrow (hBM) is a complex organ critical for hematopoietic and immune homeostasis, and where many cancers metastasize. Understanding the fundamental biology of the hBM in health and diseases remain difficult due to complexity of studying or manipulating the BM in humans. Accurate biomaterial-based in vitro models of the hBM microenvironment are critical to further our understanding of the BM-niche and advancing new clinical interventions. Here we report a unique, 96-well format, microfluidic hBM-on-a-chip that incorporates the endosteal, central marrow, and perivascular niches of the human BM. Osteogenic differentiation of donor human mesenchymal stromal cells (MSCs) produced robust mineralization on the bottom surface ("bone-like endosteal layer") of the device, and subsequent seeding of human endothelial cells and MSCs in a fibrin-collagen hydrogel network ("central marrow") on the top created an interconnected 3D microvascular network ("perivascular niche"). The 96-well format allows eight independent "chips" to be studied in one plate, thereby increasing throughput and reproducibility. We show that this complex, multi-niche microtissue accurately mimics hBM composition and microphysiology, while providing key insights on hematopoietic progenitor dynamics. Presence of the endosteal niche decreased the proliferation and increased maintenance of CD34 hematopoietic stem cells (HSCs). Upon exposure to radiation, HSCs in the hBM-chips containing endosteal niches were less frequently apoptotic, suggesting a potentially radio-protective role of the osteoblast surface. Our methods and results provide a broad platform for creating complex, multi-niche, high-throughput microphysiological (MPS) systems. Specifically, this hBM-on-a-chip opens new opportunities in human bone marrow research and therapeutics development, and can be used to better understand normal and impaired hematopoiesis, and various hBM pathologies, including cancer and BM failures.
人类骨髓(hBM)是一个复杂的器官,对于造血和免疫稳态至关重要,并且许多癌症都会转移到这里。由于研究或操纵人类 BM 的复杂性,了解健康和疾病中 hBM 的基本生物学仍然具有挑战性。准确的基于生物材料的 hBM 微环境体外模型对于深入了解 BM 生态位和推进新的临床干预措施至关重要。在这里,我们报告了一种独特的 96 孔格式微流控 hBM 芯片,该芯片整合了人类 BM 的骨内膜、中央骨髓和血管周龛位。供体人类间充质基质细胞(MSCs)的成骨分化在设备的底部表面(“类骨质骨内膜层”)产生了强烈的矿化,随后在顶部的纤维蛋白-胶原水凝胶网络(“中央骨髓”)中接种人类内皮细胞和 MSCs ,创建了相互连接的 3D 微血管网络(“血管周龛位”)。96 孔格式允许在一个平板上研究八个独立的“芯片”,从而提高了通量和可重复性。我们表明,这种复杂的多龛位微组织准确地模拟了 hBM 的组成和微生理学,同时为造血祖细胞动力学提供了关键的见解。骨内膜龛位的存在减少了 CD34 造血干细胞(HSCs)的增殖并增加了其维持。在暴露于辐射时,含有骨内膜龛位的 hBM 芯片中的 HSCs 凋亡的频率较低,这表明成骨细胞表面可能具有放射保护作用。我们的方法和结果为创建复杂的、多龛位、高通量的微生理(MPS)系统提供了广泛的平台。具体而言,这种 hBM 芯片为人类骨髓研究和治疗药物开发开辟了新的机会,可用于更好地了解正常和受损的造血以及各种 hBM 病理,包括癌症和 BM 衰竭。