Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
Plant Cell. 2021 Jul 2;33(5):1748-1770. doi: 10.1093/plcell/koab048.
The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.
本氏烟烟草原生二倍体产生丰富而有效的抗食草动物防御代谢物,被称为 17-羟基香叶基里那醇二萜糖苷(HGL-DTGs),其糖基化和丙二酰化生物合成步骤受茉莉酸信号调控。为了表征 HGL-DTGs 的生物合成途径,我们对尿苷二磷酸糖基转移酶(UGTs)进行了全基因组分析,鉴定了 107 种家族 1 UGT 成员。三种 UGT 的转录水平与两个关键 HGL-DTG 生物合成基因:香叶基香叶基二磷酸合酶(NaGGPPS)和香叶基里那醇合酶(NaGLS)的转录水平高度相关。通过病毒诱导的基因沉默证实了 NaGLS 在 HGL-DTG 生物合成中的作用。沉默尿苷二磷酸(UDP)-鼠李糖基转移酶基因 UGT91T1 证明了其在 HGL-DTGs 的鼠李糖基化中的作用。体外酶测定表明,UGT74P3 和 UGT74P4 用 UDP-葡萄糖对 17-羟基香叶基里那醇(17-HGL)进行糖基化,生成毛蕊花糖苷 I。稳定沉默 UGT74P3 和 UGT74P5 的植物严重发育畸形,表明糖苷配基具有植物毒性。合成 17-HGL 的应用和 HGL-DTG 无基因沉默植物的沉默证实了这种植物毒性。用烟草天蛾(Manduca sexta)幼虫进行的饲养实验证实了 HGL-DTG 生物合成中糖基化和丙二酰化步骤的防御功能。因此,17-HGL 的糖基化是一个关键步骤,有助于产生代谢物的防御功能,并解决这种强效化学防御的自毒性问题。