Suppr超能文献

用下一代聚膦嗪佐剂 PCEP 替代氢氧化铝凝胶提高 RG1-VLP 疫苗在 BALB/c 小鼠中的性能。

Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP.

机构信息

Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.

出版信息

Hum Vaccin Immunother. 2021 Aug 3;17(8):2748-2761. doi: 10.1080/21645515.2021.1875763. Epub 2021 Feb 11.

Abstract

Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain for which vaccine coverage is lacking. In addition, all current HPV vaccines rely on aluminum salt-based adjuvant formulations that function through unclear mechanisms with few substitutes available. In an effort to expand the toolbox of available adjuvants suitable for HPV vaccines, we compared the immunogenicity of the RG1-VLP (virus-like particle) vaccine in BALB/c mice when formulated with either the aluminum hydroxide adjuvant Alhydrogel or the novel polyphosphazene macromolecular adjuvant poly[di (carboxylatoethylphenoxy) phosphazene] (PCEP). PCEP-formulated RG1-VLPs routinely outperformed VLP/Alhydrogel in several measurements of VLP-specific humoral immunity, including consistent improvements in the magnitude of antibody (Ab) responses to both HPV16-L1 and the L2 RG1 epitope as well as neutralizing titers to HPV16 and cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39. Dose-sparing studies indicated that RG1-VLPs could be reduced in dose by 75% and the presence of PCEP ensured activity comparable to a full VLP dose adjuvanted by Alhydrogel. In addition, levels of HPV16-L1 and -L2-specific Abs were achieved after two vaccinations with PCEP as adjuvant that were equivalent to or greater than levels achieved with three vaccinations with Alhydrogel alone, indicating that the presence of PCEP resulted in accelerated immune responses that could allow for a decreased dose schedule. Given the extensive clinical track record of polyphosphazenes, these data suggest that substitution of alum-based adjuvants with PCEP for the RG1-VLP vaccine could lead to rapid seropositivity requiring fewer boosts, the dose-sparing of commercial VLP-based vaccines, and the establishment of longer-lasting humoral responses to HPV.

摘要

目前的人乳头瘤病毒 (HPV) 疫苗为预防导致口咽癌和肛门生殖器癌的最常见 HPV 类型提供了实质性保护,但仍有许多循环致癌类型缺乏疫苗覆盖。此外,所有现有的 HPV 疫苗都依赖于基于铝盐的佐剂配方,这些配方通过不明确的机制发挥作用,几乎没有替代品。为了扩大适用于 HPV 疫苗的可用佐剂工具包,我们比较了 RG1-VLP(病毒样颗粒)疫苗在 BALB/c 小鼠中与氢氧化铝佐剂 Alhydrogel 或新型聚磷酸酯大分子佐剂聚[二(羧基乙酯基苯氧基)磷腈](PCEP)联合使用时的免疫原性。在几种 HPV16-L1 和 RG1 表位的 VLPs 特异性体液免疫测量中,PCEP 配方的 RG1-VLPs 通常优于 VLP/Alhydrogel,包括对抗体 (Ab) 反应的幅度的一致改善,以及对 HPV16 和对假病毒 (PsV) 类型 HPV18 和 HPV39 的中和滴度。剂量节省研究表明,RG1-VLPs 可以减少 75%的剂量,并且 PCEP 的存在确保了与 Alhydrogel 佐剂的全 VLP 剂量相当的活性。此外,用 PCEP 作为佐剂进行两次接种后,达到了 HPV16-L1 和 -L2 特异性 Ab 的水平,与单独用 Alhydrogel 进行三次接种的水平相当或更高,这表明 PCEP 的存在导致了加速的免疫反应,可以减少剂量方案。鉴于聚磷酸酯的广泛临床记录,这些数据表明,用 PCEP 替代基于铝的佐剂用于 RG1-VLP 疫苗可能会导致更快的血清阳性,需要更少的加强针,商业 VLP 疫苗的剂量节省,并建立对 HPV 的更持久的体液反应。

相似文献

1
Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP.
Hum Vaccin Immunother. 2021 Aug 3;17(8):2748-2761. doi: 10.1080/21645515.2021.1875763. Epub 2021 Feb 11.
2
Optimization of RG1-VLP vaccine performance in mice with novel TLR4 agonists.
Vaccine. 2021 Jan 8;39(2):292-302. doi: 10.1016/j.vaccine.2020.11.066. Epub 2020 Dec 10.
3
Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses.
J Invest Dermatol. 2013 Dec;133(12):2706-2713. doi: 10.1038/jid.2013.253. Epub 2013 May 10.
4
Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV).
PLoS One. 2017 Jan 5;12(1):e0169533. doi: 10.1371/journal.pone.0169533. eCollection 2017.
6
Immune profile diversity is achieved with synthetic TLR4 agonists combined with the RG1-VLP vaccine in mice.
Vaccine. 2025 Jan 12;44:126577. doi: 10.1016/j.vaccine.2024.126577. Epub 2024 Dec 3.
8
Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2.
Vaccine. 2015 Jun 26;33(29):3346-53. doi: 10.1016/j.vaccine.2015.05.016. Epub 2015 May 21.
9
Next generation L2-based HPV vaccines cross-protect against cutaneous papillomavirus infection and tumor development.
Front Immunol. 2022 Oct 3;13:1010790. doi: 10.3389/fimmu.2022.1010790. eCollection 2022.
10

引用本文的文献

2
Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms.
Biosaf Health. 2022 Dec 2;5(1):45-61. doi: 10.1016/j.bsheal.2022.11.002. eCollection 2023 Feb.
3
Prophylactic vaccines against HPV-caused cervical cancer: novel vaccines are still demanded.
Infect Agent Cancer. 2025 Mar 10;20(1):16. doi: 10.1186/s13027-025-00643-5.
4
Immune profile diversity is achieved with synthetic TLR4 agonists combined with the RG1-VLP vaccine in mice.
Vaccine. 2025 Jan 12;44:126577. doi: 10.1016/j.vaccine.2024.126577. Epub 2024 Dec 3.
5
Current status and future directions for the development of human papillomavirus vaccines.
Front Immunol. 2024 Jun 25;15:1362770. doi: 10.3389/fimmu.2024.1362770. eCollection 2024.
6
Immunopotentiating Polyphosphazene Delivery Systems: Supramolecular Self-Assembly and Stability in the Presence of Plasma Proteins.
Mol Pharm. 2024 Feb 5;21(2):791-800. doi: 10.1021/acs.molpharmaceut.3c00916. Epub 2024 Jan 11.
7
Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine.
Rev Med Virol. 2023 Sep;33(5):e2474. doi: 10.1002/rmv.2474. Epub 2023 Aug 11.
8
Cross-neutralizing protection of vaginal and oral mucosa from HPV challenge by vaccination in a mouse model.
Vaccine. 2023 Jul 12;41(31):4480-4487. doi: 10.1016/j.vaccine.2023.05.057. Epub 2023 Jun 1.
10
Cyclo- and Polyphosphazenes for Biomedical Applications.
Molecules. 2022 Nov 22;27(23):8117. doi: 10.3390/molecules27238117.

本文引用的文献

1
New Family of Water-Soluble Sulfo-Fluoro Polyphosphazenes and Their Assembly within Hemocompatible Nanocoatings.
ACS Appl Bio Mater. 2019 Sep 16;2(9):3897-3906. doi: 10.1021/acsabm.9b00485. Epub 2019 Aug 28.
2
4
and Potency of Polyphosphazene Immunoadjuvants with Hepatitis C Virus Antigen and the Role of Their Supramolecular Assembly.
Mol Pharm. 2021 Feb 1;18(2):726-734. doi: 10.1021/acs.molpharmaceut.0c00487. Epub 2020 Jun 23.
5
HPV16 L1 diversity and its potential impact on the vaccination-induced immunity.
Gene. 2020 Jul 15;747:144682. doi: 10.1016/j.gene.2020.144682. Epub 2020 Apr 15.
6
Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels.
Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110179. doi: 10.1016/j.msec.2019.110179. Epub 2019 Sep 9.
7
Recent advances in experimental polyphosphazene adjuvants and their mechanisms of action.
Cell Tissue Res. 2018 Dec;374(3):465-471. doi: 10.1007/s00441-018-2929-4. Epub 2018 Oct 8.
8
Adenovirus based HPV L2 vaccine induces broad cross-reactive humoral immune responses.
Vaccine. 2018 Jul 16;36(30):4462-4470. doi: 10.1016/j.vaccine.2018.06.024. Epub 2018 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验