Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.
Nat Commun. 2021 Feb 11;12(1):964. doi: 10.1038/s41467-020-20877-8.
Metabolite levels in urine may provide insights into genetic mechanisms shaping their related pathways. We therefore investigate the cumulative contribution of rare, exonic genetic variants on urine levels of 1487 metabolites and 53,714 metabolite ratios among 4864 GCKD study participants. Here we report the detection of 128 significant associations involving 30 unique genes, 16 of which are known to underlie inborn errors of metabolism. The 30 genes are strongly enriched for shared expression in liver and kidney (odds ratio = 65, p-FDR = 3e-7), with hepatocytes and proximal tubule cells as driving cell types. Use of UK Biobank whole-exome sequencing data links genes to diseases connected to the identified metabolites. In silico constraint-based modeling of gene knockouts in a virtual whole-body, organ-resolved metabolic human correctly predicts the observed direction of metabolite changes, highlighting the potential of linking population genetics to modeling. Our study implicates candidate variants and genes for inborn errors of metabolism.
尿液中的代谢物水平可能为研究影响其相关途径的遗传机制提供线索。因此,我们在 4864 名 GCKD 研究参与者中,调查了稀有外显子遗传变异对 1487 种代谢物水平和 53714 种代谢物比值的累积贡献。本研究报告了 128 个具有统计学意义的关联,涉及 30 个独特基因,其中 16 个基因已知与先天性代谢缺陷有关。这 30 个基因在肝脏和肾脏中具有强烈的共表达富集(比值比=65,p-FDR=3e-7),其中肝细胞和近端肾小管细胞是主要的驱动细胞类型。利用英国生物库全外显子测序数据将基因与与鉴定出的代谢物相关的疾病联系起来。在一个虚拟的全身器官分辨率代谢人体中对基因敲除进行基于约束的计算模型模拟,可以正确预测代谢物变化的观察方向,突出了将群体遗传学与建模联系起来的潜力。本研究提示了候选变异和代谢缺陷相关基因。