Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research-UFZ, 39114 Magdeburg, Germany; Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA.
Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, 30172 Venezia-Mestre, Italy.
Water Res. 2021 Apr 1;193:116887. doi: 10.1016/j.watres.2021.116887. Epub 2021 Feb 3.
Algae, as primary producers in riverine ecosystems, are found in two distinct habitats: benthic and pelagic algae typically prevalent in shallow/small and deep/large streams, respectively. Over an entire river continuum, spatiotemporal patterns of the two algal communities reflect specificity in habitat preference determined by geomorphic structure, hydroclimatic controls, and spatiotemporal heterogeneity in nutrient loads from point- and diffuse-sources. By representing these complex interactions between geomorphic, hydrologic, geochemical, and ecological processes, we present here a new river-network-scale dynamic model (CANDY) for pelagic (A) and benthic (B) algae competing for energy and one limiting nutrient (phosphorus, P). We used the urbanized Weser River Basin in Germany (7th-order; ~8.4 million population; ~46 K km) as a case study and analyzed simulations for equilibrium mass and concentrations under steady median river discharge. We also examined P, A, and B spatial patterns in four sub-basins. We found an emerging pattern characterized by scaling of P and A concentrations over stream-order ω, whereas B concentration was described by three distinct phases. Furthermore, an abrupt algal regime shift occurred in intermediate streams from B dominance in ω≤3 to exclusive A presence in ω≥6. Modeled and long-term basin-scale monitored dissolved P concentrations matched well for ω>4, and with overlapping ranges in ω<3. Power-spectral analyses for the equilibrium P, A, and B mass distributions along hydrological flow paths showed stronger clustering compared to geomorphological attributes, and longer spatial autocorrelation distance for A compared to B. We discuss the implications of our findings for advancing hydro-ecological concepts, guiding monitoring, informing management of water quality, restoring aquatic habitat, and extending CANDY model to other river basins.
藻类作为河流生态系统中的初级生产者,存在于两种截然不同的生境中:底栖藻类和浮游藻类,分别在浅/小河流和深/大河流中较为常见。在整个河流连续体上,两种藻类群落的时空格局反映了由地貌结构、水气候控制以及点源和扩散源养分负荷的时空异质性决定的栖息地偏好特异性。通过代表地貌、水文、地球化学和生态过程之间的这些复杂相互作用,我们在这里提出了一个新的河流网络尺度动态模型(CANDY),用于竞争能量和一种限制养分(磷,P)的浮游(A)和底栖(B)藻类。我们使用德国城市化的威悉河流域(7 级;约 840 万人口;约 46000 平方公里)作为案例研究,并分析了在稳定中值河流流量下平衡质量和浓度的模拟。我们还研究了四个子流域的 P、A 和 B 空间格局。我们发现了一种新兴模式,其特征是 P 和 A 浓度随流序ω的缩放,而 B 浓度则由三个不同的阶段描述。此外,在中等级别的河流中发生了藻类生态系统的突然转变,从ω≤3 的 B 优势转变为ω≥6 的 A 单独存在。模型化和长期流域尺度监测的溶解 P 浓度在ω>4 时与河流流量路径上的平衡 P、A 和 B 质量分布的功率谱分析相比,与地貌属性的聚类更强,与 B 相比,A 的空间自相关距离更长。我们讨论了我们的发现对推进水-生态概念、指导监测、为水质管理提供信息、恢复水生栖息地以及将 CANDY 模型扩展到其他流域的意义。