Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway, Ireland.
Water Environ Res. 2021 Sep;93(9):1562-1575. doi: 10.1002/wer.1538. Epub 2021 Feb 28.
Diverse microbial communities coexist in the partial nitritation-anaerobic ammonium oxidation (PNA) process, in which nitrogen metabolism and information exchange are two important microbial interactions. In the PNA process, the existence of diverse microorganisms including nitrifiers, anammox bacteria, and heterotrophs makes it challenging to achieve a balanced relationship between anaerobic ammonium oxidation bacteria and ammonia oxidizing bacteria. In this study, potential microbial functions in nitrogen conversion and acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in PNA processes were examined. Candidatus_Kuenenia and Nitrosomonas were the key functional bacteria responsible for PNA, while Nitrospira was detected as the dominant nitrite oxidizing bacteria (NOB). Heterotrophs containing nxr might play a similar function to NOB. The AHLs-QS system was an important microbial communication pathway in PNA systems. N-octanoyl-L-homoserine lactone, N-decanoyl homoserine lactone, and N-dodecanoyl homoserine lactone were the main AHLs, which might be synthesized by nitrogen converting microorganisms and heterotrophs. However, only heterotrophs had the potential to sense and degrade AHLs, such as Saccharophagus (sensing) and Leptospira (degradation). These results provide comprehensive information about the possible microbial functions and interactions in the PNA system and clues for system optimization from a microbial perspective. PRACTITIONER POINTS: ●Potential functions of anammox bacteria, nitrifiers, and heterotrophs were revealed. ●Diverse nitrogen conversion and AHLs-quorum sensing related genes were detected. ●Anammox bacteria and AOB played important roles in the AHLs synthesis process. ●Heterotrophs could sense and degrade AHLs during information exchange.
不同的微生物群落共存于部分亚硝化-厌氧氨氧化(PNA)过程中,其中氮代谢和信息交换是两种重要的微生物相互作用。在 PNA 过程中,存在着包括硝化菌、厌氧氨氧化菌和异养菌在内的多种微生物,这使得厌氧氨氧化菌和氨氧化菌之间难以达到平衡关系。本研究考察了 PNA 过程中氮转化和酰基高丝氨酸内酯(AHLs)-群体感应(QS)的潜在微生物功能。Candidatus_Kuenenia 和 Nitrosomonas 是 PNA 的关键功能菌,而 Nitrospira 则被检测为优势亚硝酸盐氧化菌(NOB)。含有 nxr 的异养菌可能发挥类似 NOB 的功能。AHLs-QS 系统是 PNA 系统中一种重要的微生物通讯途径。N-辛酰基-L-高丝氨酸内酯、N-癸酰基高丝氨酸内酯和 N-十二酰基高丝氨酸内酯是主要的 AHLs,可能由氮转化微生物和异养菌合成。然而,只有异养菌具有感应和降解 AHLs 的潜力,如 Saccharophagus(感应)和 Leptospira(降解)。这些结果提供了关于 PNA 系统中可能的微生物功能和相互作用的全面信息,并从微生物角度为系统优化提供了线索。
揭示了厌氧氨氧化菌、硝化菌和异养菌的潜在功能。
检测到多样化的氮转化和 AHLs-群体感应相关基因。
厌氧氨氧化菌和 AOB 在 AHLs 合成过程中发挥重要作用。
异养菌在信息交换过程中可以感应和降解 AHLs。