Suppr超能文献

糖基化对动脉弹性蛋白层间结合的影响。

Effect of Glycation on Interlamellar Bonding of Arterial Elastin.

作者信息

Wang R, Yu X, Gkousioudi A, Zhang Y

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA 02215.

Department of Biomedical Engineering, Boston University, Boston, MA 02215.

出版信息

Exp Mech. 2021 Jan;61(1):81-94. doi: 10.1007/s11340-020-00644-y. Epub 2020 Jul 29.

Abstract

BACKGROUND

Interlamellar bonding in the arterial wall is often compromised by cardiovascular diseases. However, several recent nationwide and hospital-based studies have uniformly reported reduced risk of thoracic aortic dissection in patients with diabetes. As one of the primary structural constituents in the arterial wall, elastin plays an important role in providing its interlamellar structural integrity.

OBJECTIVE

The purpose of this study is to examine the effects of glycation on the interlamellar bonding properties of arterial elastin.

METHODS

Purified elastin network was isolated from porcine descending thoracic aorta and incubated in 2 M glucose solution for 7, 14 or 21 days at 37 °C. Peeling and direct tension tests were performed to provide complimentary information on understanding the interlamellar layer separation properties of elastin network with glycation effect. Peeling tests were simulated using a cohesive zone model (CZM). Multiphoton imaging was used to visualize the interlamellar elastin fibers in samples subjected to peeling and direct tension.

RESULTS

Peeling and direct tension tests show that interlamellar energy release rate and strength both increases with the duration of glucose treatment. The traction at damage initiation estimated for the CZM agrees well with the interlamellar strength measurements from direct tension tests. Glycation was also found to increase the interlamellar failure strain of arterial elastin. Multiphoton imaging confirmed the contribution of radially running elastin fibers to resisting dissection.

CONCLUSIONS

Nonenzymatic glycation reduces the propensity of arterial elastin to dissection. This study also suggests that the CZM effectively describes the interlamellar bonding properties of arterial elastin.

摘要

背景

动脉壁的层间结合常因心血管疾病而受损。然而,最近几项全国性和基于医院的研究均一致报告称,糖尿病患者胸主动脉夹层的风险降低。作为动脉壁的主要结构成分之一,弹性蛋白在提供其层间结构完整性方面发挥着重要作用。

目的

本研究旨在探讨糖基化对动脉弹性蛋白层间结合特性的影响。

方法

从猪降主动脉中分离出纯化的弹性蛋白网络,并在37℃下于2M葡萄糖溶液中孵育7、14或21天。进行剥离试验和直接拉伸试验,以提供补充信息,帮助理解糖基化作用下弹性蛋白网络的层间分离特性。使用内聚区模型(CZM)模拟剥离试验。采用多光子成像技术观察经受剥离和直接拉伸的样品中层间弹性纤维的情况。

结果

剥离试验和直接拉伸试验表明,层间能量释放率和强度均随葡萄糖处理时间的延长而增加。CZM估算的损伤起始时的牵引力与直接拉伸试验测得的层间强度结果吻合良好。还发现糖基化会增加动脉弹性蛋白的层间破坏应变。多光子成像证实了径向排列的弹性纤维对抵抗夹层的作用。

结论

非酶糖基化降低了动脉弹性蛋白发生夹层的倾向。本研究还表明,CZM能有效描述动脉弹性蛋白的层间结合特性。

相似文献

1
Effect of Glycation on Interlamellar Bonding of Arterial Elastin.
Exp Mech. 2021 Jan;61(1):81-94. doi: 10.1007/s11340-020-00644-y. Epub 2020 Jul 29.
2
Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
Biomech Model Mechanobiol. 2021 Feb;20(1):93-106. doi: 10.1007/s10237-020-01370-z. Epub 2020 Jul 23.
3
Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.
J Mech Behav Biomed Mater. 2017 Jan;65:20-28. doi: 10.1016/j.jmbbm.2016.08.011. Epub 2016 Aug 9.
4
Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta.
J Biomech. 2015 Oct 15;48(13):3599-605. doi: 10.1016/j.jbiomech.2015.08.004. Epub 2015 Aug 10.
5
Effect of glucose on the biomechanical function of arterial elastin.
J Mech Behav Biomed Mater. 2015 Sep;49:244-54. doi: 10.1016/j.jmbbm.2015.04.025. Epub 2015 May 14.
7
Experimental and numerical studies of two arterial wall delamination modes.
J Mech Behav Biomed Mater. 2018 Jan;77:321-330. doi: 10.1016/j.jmbbm.2017.09.025. Epub 2017 Sep 19.
8
The effect of glycation on arterial microstructure and mechanical response.
J Biomed Mater Res A. 2014 Aug;102(8):2565-72. doi: 10.1002/jbm.a.34927. Epub 2013 Sep 2.
9
Dissection properties of the human aortic media: an experimental study.
J Biomech Eng. 2008 Apr;130(2):021007. doi: 10.1115/1.2898733.
10
Quantification of alterations in structure and function of elastin in the arterial media.
Hypertension. 1998 Jul;32(1):170-5. doi: 10.1161/01.hyp.32.1.170.

引用本文的文献

1
Dissection Propagation via Avalanches in Human Descending Thoracic Aorta: Effect of Aging.
Acta Biomater. 2025 Jun 27. doi: 10.1016/j.actbio.2025.06.056.
2
Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta.
Biomech Model Mechanobiol. 2024 Dec;23(6):1837-1849. doi: 10.1007/s10237-024-01871-1. Epub 2024 Jul 10.
4
Delamination Strength and Elastin Interlaminar Fibers Decrease with the Development of Aortic Dissection in Model Rats.
Bioengineering (Basel). 2023 Nov 8;10(11):1292. doi: 10.3390/bioengineering10111292.
5
Mechanical Properties and Functions of Elastin: An Overview.
Biomolecules. 2023 Mar 22;13(3):574. doi: 10.3390/biom13030574.
6
Effect of ribose-glycated BSA on histone demethylation.
Front Genet. 2022 Oct 5;13:957937. doi: 10.3389/fgene.2022.957937. eCollection 2022.

本文引用的文献

1
Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
Biomech Model Mechanobiol. 2021 Feb;20(1):93-106. doi: 10.1007/s10237-020-01370-z. Epub 2020 Jul 23.
2
Avalanches and power law behavior in aortic dissection propagation.
Sci Adv. 2020 May 22;6(21):eaaz1173. doi: 10.1126/sciadv.aaz1173. eCollection 2020 May.
3
Glucose-induced structural changes and anomalous diffusion of elastin.
Colloids Surf B Biointerfaces. 2020 Apr;188:110776. doi: 10.1016/j.colsurfb.2020.110776. Epub 2020 Jan 8.
4
Effect of diabetes mellitus on the dissection properties of the rabbit descending thoracic aortas.
J Biomech. 2020 Feb 13;100:109592. doi: 10.1016/j.jbiomech.2019.109592. Epub 2019 Dec 24.
6
Bovine annulus fibrosus hydration affects rate-dependent failure mechanics in tension.
J Biomech. 2019 May 24;89:34-39. doi: 10.1016/j.jbiomech.2019.04.008. Epub 2019 Apr 10.
9
Mechanical Properties of Arterial Elastin With Water Loss.
J Biomech Eng. 2018 Apr 1;140(4):0410121-8. doi: 10.1115/1.4038887.
10
Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum.
J Mech Behav Biomed Mater. 2018 Jan;77:634-641. doi: 10.1016/j.jmbbm.2017.10.023. Epub 2017 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验