Orschulik Jakob, Pokee Diana, Menden Tobias, Leonhardt Steffen, Walter Marian
Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
J Electr Bioimpedance. 2018 Dec 31;9(1):84-95. doi: 10.2478/joeb-2018-0013. eCollection 2018 Jan.
Lung pathologies such as edema, atelectasis or pneumonia are potentially life threatening conditions. Especially in critically ill and mechanically ventilated patients, an early diagnosis and treatment is crucial to prevent an Acute Respiratory Distress Syndrome [1]. Thus, continuous monitoring tool for the lung condition available at the bedside would be highly appreciated. One concept for this is Electrical Impedance Tomography (EIT). In EIT, an electrode belt of typically 16 or 32 electrodes is attached at the body surface and multiple impedance measurements are performed. From this, the conductivity change inside the body is reconstructed in a two-dimensional image. In various studies, EIT proved to be a useful tool for quantifying recruitment maneuvers, the assessment of the ventilation homogeneity, the detection of lung edema or perfusion monitoring [2, 3, 4, 5]. Nevertheless, the main problem of EIT is the low spatial resolution (compared to CT) and the limitation to two dimensional images. In this paper, we try to address the latter issue: Instead of projecting conductivity changes onto a two-dimensional image, we adjust electrode positions to focus single tetrapolar measurements to specific, three-dimensional regions of interest. In earlier work, we defined guidelines to achieve this focusing [6, 7]. In this paper, we demonstrate in simulations and in a water tank experiment that applying these guidelines can help to detect pathologies in specific lung regions.
肺水肿、肺不张或肺炎等肺部病变是潜在的危及生命的病症。特别是在危重症和机械通气患者中,早期诊断和治疗对于预防急性呼吸窘迫综合征至关重要[1]。因此,床边可用的肺部状况连续监测工具将非常受欢迎。其中一个概念是电阻抗断层成像(EIT)。在EIT中,通常由16或32个电极组成的电极带附着在身体表面,并进行多次阻抗测量。由此,体内的电导率变化被重建为二维图像。在各种研究中,EIT被证明是一种用于量化肺复张手法、评估通气均匀性、检测肺水肿或灌注监测的有用工具[2,3,4,5]。然而,EIT的主要问题是空间分辨率低(与CT相比)以及局限于二维图像。在本文中,我们试图解决后一个问题:我们不是将电导率变化投影到二维图像上,而是调整电极位置,将单个四极测量聚焦到特定的三维感兴趣区域。在早期的工作中,我们定义了实现这种聚焦的指导原则[6,7]。在本文中,我们在模拟和水箱实验中证明,应用这些指导原则有助于检测特定肺区域的病变。