Suppr超能文献

大鼠前额皮质边缘区神经毡和小白蛋白神经元的日间变化。

Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex.

机构信息

Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Washington, 98686, USA.

Dow Neurobiology, Legacy Research Institute, 1225 NE 2nd Ave, Portland, OR, 97232, USA.

出版信息

Brain Struct Funct. 2021 May;226(4):1135-1153. doi: 10.1007/s00429-021-02229-4. Epub 2021 Feb 14.

Abstract

Perineuronal nets (PNNs) surrounding fast-spiking, parvalbumin (PV) interneurons provide excitatory:inhibitory balance, which is impaired in several disorders associated with altered diurnal rhythms, yet few studies have examined diurnal rhythms of PNNs or PV cells. We measured the intensity and number of PV cells and PNNs labeled with Wisteria floribunda agglutinin (WFA) and also the oxidative stress marker 8-oxo-deoxyguanosine (8-oxo-dG) in rat prelimbic medial prefrontal cortex (mPFC) at Zeitgeber times (ZT) ZT0 (lights-on, inactive phase), ZT6 (mid-inactive phase), ZT12 (lights-off, active phase), and ZT18 (mid-active phase). Relative to ZT0, the intensities of PNN and PV labeling were increased in the dark (active) phase compared with the light (inactive) phase. The intensity of 8-oxo-dG was decreased from ZT0 at all times (ZT6,12,18). We also measured GAD 65/67 and vGLUT1 puncta apposed to PV cells with and without PNNs. There were more excitatory puncta on PV cells with PNNs at ZT18 vs. ZT6, but no changes in PV cells without PNNs and no changes in inhibitory puncta. Whole-cell slice recordings in fast-spiking (PV) cells with PNNs showed an increased ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor:N-methyl-D-aspartate receptor (AMPA: NMDA) at ZT18 vs. ZT6. The number of PV cells and PV/PNN cells containing orthodenticle homeobox 2 (OTX2), which maintains PNNs, showed a strong trend toward an increase from ZT6 to ZT18. Diurnal fluctuations in PNNs and PV cells are expected to alter cortical excitatory:inhibitory balance and provide new insights into treatments for diseases impacted by disturbances in sleep and circadian rhythms.

摘要

周围快速放电、巴氨丁肽(PV)中间神经元的神经周细胞网络(PNNs)提供了兴奋抑制平衡,这种平衡在几种与昼夜节律改变相关的疾病中受到损害,但很少有研究检查 PNNs 或 PV 细胞的昼夜节律。我们测量了 Wisteria floribunda agglutinin(WFA)标记的 PV 细胞和 PNNs 的强度和数量,以及大鼠前额叶皮层(mPFC)内侧前额叶的氧化应激标志物 8-氧代脱氧鸟苷(8-oxo-dG)在 Zeitgeber 时间(ZT)ZT0(灯亮,不活动期)、ZT6(中不活动期)、ZT12(灯关,活动期)和 ZT18(中活动期)的时间点。与 ZT0 相比,PNN 和 PV 标记的强度在黑暗(活动)期比在光照(不活动)期增加。8-oxo-dG 的强度从所有时间点(ZT6、12、18)的 ZT0 开始降低。我们还测量了与有和没有 PNN 的 PV 细胞相对应的 GAD 65/67 和 vGLUT1 点状结构。在 ZT18 与 ZT6 相比,有 PNN 的 PV 细胞上的兴奋性点状结构更多,但在没有 PNN 的 PV 细胞中没有变化,抑制性点状结构也没有变化。在有 PNN 的快速放电(PV)细胞的全细胞切片记录中,与 ZT6 相比,在 ZT18 时,α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体:N-甲基-D-天冬氨酸受体(AMPA:NMDA)的比值增加。含有同源异型盒 2(OTX2)的 PV 细胞和含有 PNN 的 PV/PNN 细胞的数量显示出从 ZT6 到 ZT18 增加的强烈趋势。PNNs 和 PV 细胞的昼夜波动预计会改变皮质兴奋性抑制平衡,并为受睡眠和昼夜节律紊乱影响的疾病的治疗提供新的见解。

相似文献

1
Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex.
Brain Struct Funct. 2021 May;226(4):1135-1153. doi: 10.1007/s00429-021-02229-4. Epub 2021 Feb 14.
4
Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia.
Neuropsychopharmacology. 2016 Aug;41(9):2206-14. doi: 10.1038/npp.2016.24. Epub 2016 Feb 12.
5
Perineuronal Nets Regulate the Inhibitory Perisomatic Input onto Parvalbumin Interneurons and γ Activity in the Prefrontal Cortex.
J Neurosci. 2020 Jun 24;40(26):5008-5018. doi: 10.1523/JNEUROSCI.0291-20.2020. Epub 2020 May 26.
6
Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex.
Matrix Biol. 2013 Aug 8;32(6):352-63. doi: 10.1016/j.matbio.2013.04.001. Epub 2013 Apr 15.
7
The impact of early life maternal deprivation on the perineuronal nets in the prefrontal cortex and hippocampus of young adult rats.
Front Cell Dev Biol. 2022 Nov 28;10:982663. doi: 10.3389/fcell.2022.982663. eCollection 2022.
8
Age-dependent and region-specific alteration of parvalbumin neurons and perineuronal nets in the mouse cerebral cortex.
Neurochem Int. 2018 Jan;112:59-70. doi: 10.1016/j.neuint.2017.11.001. Epub 2017 Nov 7.

引用本文的文献

1
Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture.
Res Sq. 2025 Feb 14:rs.3.rs-5962240. doi: 10.21203/rs.3.rs-5962240/v1.
2
Selenium deficiency impedes maturation of parvalbumin interneurons, perineuronal nets, and neural network activity.
Redox Biol. 2025 Apr;81:103548. doi: 10.1016/j.redox.2025.103548. Epub 2025 Feb 13.
4
Modulation of stress-, pain-, and alcohol-related behaviors by perineuronal nets.
Neurobiol Stress. 2024 Nov 14;33:100692. doi: 10.1016/j.ynstr.2024.100692. eCollection 2024 Nov.
5
Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology.
Front Mol Med. 2023 Jun 14;3:1198021. doi: 10.3389/fmmed.2023.1198021. eCollection 2023.
6
Astrocytes require perineuronal nets to maintain synaptic homeostasis in mice.
Nat Neurosci. 2024 Aug;27(8):1475-1488. doi: 10.1038/s41593-024-01714-3. Epub 2024 Jul 17.
7
Molecular and cellular rhythms in excitatory and inhibitory neurons in the mouse prefrontal cortex.
bioRxiv. 2024 Aug 7:2024.07.05.601880. doi: 10.1101/2024.07.05.601880.
10
Chronic dietary supplementation with nicotinamide riboside reduces sleep need in the laboratory mouse.
Sleep Adv. 2023 Dec 20;4(1):zpad044. doi: 10.1093/sleepadvances/zpad044. eCollection 2023.

本文引用的文献

2
Circadian Rhythms of Perineuronal Net Composition.
eNeuro. 2020 Jul 31;7(4). doi: 10.1523/ENEURO.0034-19.2020. Print 2020 Jul/Aug.
3
Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation.
Neural Plast. 2019 Oct 20;2019:6804575. doi: 10.1155/2019/6804575. eCollection 2019.
4
Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia.
Nat Commun. 2019 Aug 9;10(1):3355. doi: 10.1038/s41467-019-11335-1.
5
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function.
Nat Rev Neurosci. 2019 Aug;20(8):451-465. doi: 10.1038/s41583-019-0196-3. Epub 2019 Jul 1.
7
Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu.
Neurobiol Sleep Circadian Rhythms. 2018 Apr 17;5:15-36. doi: 10.1016/j.nbscr.2018.04.001. eCollection 2018 Jun.
8
Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States.
Front Syst Neurosci. 2019 Feb 1;13:2. doi: 10.3389/fnsys.2019.00002. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验