Suppr超能文献

解析核苷酸修饰诱导的结构和稳定性变化。

Deciphering nucleotide modification-induced structure and stability changes.

机构信息

Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.

出版信息

RNA Biol. 2021 Nov;18(11):1920-1930. doi: 10.1080/15476286.2021.1882179. Epub 2021 Feb 15.

Abstract

Nucleotide modification in RNA controls a bevy of biological processes, including RNA degradation, gene expression, and gene editing. In turn, misregulation of modified nucleotides is associated with a host of chronic diseases and disorders. However, the molecular mechanisms driving these processes remain poorly understood. To partially address this knowledge gap, we used alchemical and temperature replica exchange molecular dynamics (TREMD) simulations on an RNA duplex and an analogous hairpin to probe the structural effects of modified and/or mutant nucleotides. The simulations successfully predict the modification/mutation-induced relative free energy change for complementary duplex formation, and structural analyses highlight mechanisms driving stability changes. Furthermore, TREMD simulations for a hairpin-forming RNA with and without modification provide reliable estimations of the energy landscape. Illuminating the impact of methylated and/or mutated nucleotides on the structure-function relationship and the folding energy landscape, the simulations provide insights into modification-induced alterations to the folding mechanics of the hairpin. The results here may be biologically significant as hairpins are widespread structure motifs that play critical roles in gene expression and regulation. Specifically, the tetraloop of the probed hairpin is phylogenetically abundant, and the stem mirrors a miRNA seed region whose modification has been implicated in epilepsy pathogenesis.

摘要

核苷酸修饰在 RNA 中控制着一系列的生物过程,包括 RNA 降解、基因表达和基因编辑。反过来,修饰核苷酸的失调与许多慢性疾病和紊乱有关。然而,驱动这些过程的分子机制仍知之甚少。为了部分解决这一知识空白,我们使用了 RNA 双链体和类似发夹的热力学和动力学模拟,来探究修饰和/或突变核苷酸的结构效应。模拟成功地预测了互补双链体形成的修饰/突变诱导的相对自由能变化,结构分析突出了驱动稳定性变化的机制。此外,对于带有和不带有修饰的发夹形成 RNA 的 TREMD 模拟提供了能量景观的可靠估计。模拟阐明了甲基化和/或突变核苷酸对结构-功能关系和折叠能量景观的影响,为发夹折叠力学的修饰诱导变化提供了见解。这些结果可能具有生物学意义,因为发夹是广泛存在的结构基序,在基因表达和调控中起着关键作用。具体来说,所研究的发夹的四螺旋体在系统发育上很丰富,其茎类似于 miRNA 种子区域,其修饰已被牵连到癫痫发病机制中。

相似文献

1
Deciphering nucleotide modification-induced structure and stability changes.
RNA Biol. 2021 Nov;18(11):1920-1930. doi: 10.1080/15476286.2021.1882179. Epub 2021 Feb 15.
2
Free energy profile of RNA hairpins: a molecular dynamics simulation study.
Biophys J. 2010 Feb 17;98(4):627-36. doi: 10.1016/j.bpj.2009.10.040.
3
Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops.
RNA. 2014 Jun;20(6):825-34. doi: 10.1261/rna.043232.113. Epub 2014 Apr 17.
4
Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
J Am Chem Soc. 2014 Dec 31;136(52):18052-61. doi: 10.1021/ja5100756. Epub 2014 Dec 17.
5
Free-energy landscape of a hyperstable RNA tetraloop.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6665-70. doi: 10.1073/pnas.1603154113. Epub 2016 May 27.
6
Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop.
J Phys Chem B. 2024 Apr 4;128(13):3157-3166. doi: 10.1021/acs.jpcb.4c00522. Epub 2024 Mar 27.
8
Equilibrium Denaturation and Preferential Interactions of an RNA Tetraloop with Urea.
J Phys Chem B. 2017 Apr 20;121(15):3734-3746. doi: 10.1021/acs.jpcb.6b10767. Epub 2017 Feb 16.
10
Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations.
J Chem Theory Comput. 2018 Dec 11;14(12):6598-6612. doi: 10.1021/acs.jctc.8b00633. Epub 2018 Nov 27.

引用本文的文献

1
On the specificity of the recognition of m6A-RNA by YTH reader domains.
J Biol Chem. 2024 Dec;300(12):107998. doi: 10.1016/j.jbc.2024.107998. Epub 2024 Nov 17.
3
Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop.
J Phys Chem B. 2024 Apr 4;128(13):3157-3166. doi: 10.1021/acs.jpcb.4c00522. Epub 2024 Mar 27.
5
Molecular Simulations Matching Denaturation Experiments for N-Methyladenosine.
ACS Cent Sci. 2022 Aug 24;8(8):1218-1228. doi: 10.1021/acscentsci.2c00565. Epub 2022 Aug 3.
6
A Test and Refinement of Folding Free Energy Nearest Neighbor Parameters for RNA Including N-Methyladenosine.
J Mol Biol. 2022 Sep 30;434(18):167632. doi: 10.1016/j.jmb.2022.167632. Epub 2022 May 16.
7
Recent advances in functional annotation and prediction of the epitranscriptome.
Comput Struct Biotechnol J. 2021 May 21;19:3015-3026. doi: 10.1016/j.csbj.2021.05.030. eCollection 2021.

本文引用的文献

1
Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery.
J Chem Inf Model. 2020 Nov 23;60(11):5595-5623. doi: 10.1021/acs.jcim.0c00613. Epub 2020 Sep 16.
2
Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides.
Nucleic Acids Res. 2020 Sep 18;48(16):8901-8913. doi: 10.1093/nar/gkaa654.
3
Repulsive Soft-Core Potentials for Efficient Alchemical Free Energy Calculations.
J Chem Theory Comput. 2020 Aug 11;16(8):4776-4789. doi: 10.1021/acs.jctc.0c00163. Epub 2020 Jul 6.
4
Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex.
J Comput Chem. 2020 Jul 30;41(20):1804-1819. doi: 10.1002/jcc.26221. Epub 2020 May 25.
5
MicroRNA Nanotherapeutics for Lung Targeting. Insights into Pulmonary Hypertension.
Int J Mol Sci. 2020 May 4;21(9):3253. doi: 10.3390/ijms21093253.
6
Fitting Corrections to an RNA Force Field Using Experimental Data.
J Chem Theory Comput. 2019 Jun 11;15(6):3425-3431. doi: 10.1021/acs.jctc.9b00206. Epub 2019 May 23.
7
N-Methyladenosine (mA): A Promising New Molecular Target in Acute Myeloid Leukemia.
Front Oncol. 2019 Apr 9;9:251. doi: 10.3389/fonc.2019.00251. eCollection 2019.
8
High Oct4 expression: implications in the pathogenesis of neuroblastic tumours.
BMC Cancer. 2019 Jan 3;19(1):1. doi: 10.1186/s12885-018-5219-3.
9
RNA modifications in structure prediction - Status quo and future challenges.
Methods. 2019 Mar 1;156:32-39. doi: 10.1016/j.ymeth.2018.10.019. Epub 2018 Oct 30.
10
Stability of RNA duplexes containing inosine·cytosine pairs.
Nucleic Acids Res. 2018 Dec 14;46(22):12099-12108. doi: 10.1093/nar/gky907.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验