Suppr超能文献

带泊松观测值的低秩张量补全

Low Rank Tensor Completion With Poisson Observations.

作者信息

Zhang Xiongjun, Ng Michael K

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4239-4251. doi: 10.1109/TPAMI.2021.3059299. Epub 2022 Jul 1.

Abstract

Poisson observations for videos are important models in video processing and computer vision. In this paper, we study the third-order tensor completion problem with Poisson observations. The main aim is to recover a tensor based on a small number of its Poisson observation entries. A existing matrix-based method may be applied to this problem via the matricized version of the tensor. However, this method does not leverage on the global low-rankness of a tensor and may be substantially suboptimal. Our approach is to consider the maximum likelihood estimate of the Poisson distribution, and utilize the Kullback-Leibler divergence for the data-fitting term to measure the observations and the underlying tensor. Moreover, we propose to employ a transformed tensor nuclear norm ball constraint and a bounded constraint of each entry, where the transformed tensor nuclear norm is used to get a lower transformed multi-rank tensor with suitable unitary transformation matrices. We show that the upper bound of the error of the estimator of the proposed model is less than that of the existing matrix-based method. Also an information theoretic lower error bound is established. An alternating direction method of multipliers is developed to solve the resulting convex optimization model. Extensive numerical experiments on synthetic data and real-world datasets are presented to demonstrate the effectiveness of our proposed model compared with existing tensor completion methods.

摘要

视频的泊松观测是视频处理和计算机视觉中的重要模型。在本文中,我们研究具有泊松观测的三阶张量补全问题。主要目标是基于张量的少量泊松观测条目来恢复该张量。一种现有的基于矩阵的方法可以通过张量的向量化版本应用于此问题。然而,该方法没有利用张量的全局低秩性,可能会严重次优。我们的方法是考虑泊松分布的最大似然估计,并利用库尔贝克 - 莱布勒散度作为数据拟合项来衡量观测值和潜在张量。此外,我们建议采用变换后的张量核范数球约束和每个条目的有界约束,其中变换后的张量核范数用于通过合适的酉变换矩阵得到较低的变换多秩张量。我们表明,所提出模型的估计器误差上限小于现有基于矩阵的方法。还建立了一个信息论下限误差界。开发了一种交替方向乘子法来求解由此产生的凸优化模型。给出了在合成数据和真实世界数据集上的大量数值实验,以证明我们提出的模型与现有张量补全方法相比的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验