Chen Qiulin, Li Hao, Meyerson Melissa L, Rodriguez Rodrigo, Kawashima Kenta, Weeks Jason A, Sun Hohyun, Xie Qingshui, Lin Jie, Henkelman Graeme, Heller Adam, Peng Dong-Liang, Mullins C Buddie
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9985-9993. doi: 10.1021/acsami.0c21195. Epub 2021 Feb 16.
The highly reactive nature and rough surface of Li foil can lead to the uncontrollable formation of Li dendrites when employed as an anode in a lithium metal battery. Thus, it could be of great practical utility to create uniform, electrochemically stable, and "lithiophilic" surfaces to realize homogeneous deposition of Li. Herein, a LiZn alloy layer is deposited on the surface of Li foil by e-beam evaporation. The idea is to introduce a uniform alloy surface to increase the active area and make use of the Zn sites to induce homogeneous nucleation of Li. The results show that the alloy film protected the Li metal anode, allowing for a longer cycling life with a lower deposition overpotential over a pure-Li metal anode in symmetric Li cells. Furthermore, full cells pairing the modified lithium anode with a LiFePO cathode showed an incremental increase in Coulombic efficiency compared with pure-Li. The concept of using only an alloy modifying layer by an in-situ e-beam deposition synthesis method offers a potential method for enabling lithium metal anodes for next-generation lithium batteries.
锂箔的高反应活性和粗糙表面在用作锂金属电池的阳极时会导致锂枝晶的不可控形成。因此,创建均匀、电化学稳定且“亲锂”的表面以实现锂的均匀沉积可能具有很大的实际应用价值。在此,通过电子束蒸发在锂箔表面沉积了一层锂锌合金层。其想法是引入一个均匀的合金表面以增加活性面积,并利用锌位点诱导锂的均匀成核。结果表明,该合金膜保护了锂金属阳极,与对称锂电池中的纯锂金属阳极相比,能实现更长的循环寿命以及更低的沉积过电位。此外,将改性锂阳极与磷酸铁锂阴极配对的全电池与纯锂相比,库仑效率有所提高。通过原位电子束沉积合成方法仅使用合金改性层的概念为下一代锂电池启用锂金属阳极提供了一种潜在方法。