Suppr超能文献

一种基于系统的方法,可将已上市的治疗药物重新用于抗病毒用途:以 SARS-CoV-2 为例。

A systems-based method to repurpose marketed therapeutics for antiviral use: a SARS-CoV-2 case study.

机构信息

Scipher Medicine Corporation, Waltham, MA, USA.

Scipher Medicine Corporation, Waltham, MA, USA

出版信息

Life Sci Alliance. 2021 Feb 16;4(5). doi: 10.26508/lsa.202000904. Print 2021 May.

Abstract

This study describes two complementary methods that use network-based and sequence similarity tools to identify drug repurposing opportunities predicted to modulate viral proteins. This approach could be rapidly adapted to new and emerging viruses. The first method built and studied a virus-host-physical interaction network; a three-layer multimodal network of drug target proteins, human protein-protein interactions, and viral-host protein-protein interactions. The second method evaluated sequence similarity between viral proteins and other proteins, visualized by constructing a virus-host-similarity interaction network. Methods were validated on the human immunodeficiency virus, hepatitis B, hepatitis C, and human papillomavirus, then deployed on SARS-CoV-2. Comparison of virus-host-physical interaction predictions to known antiviral drugs had AUCs of 0.69, 0.59, 0.78, and 0.67, respectively, reflecting that the scores are predictive of effective drugs. For SARS-CoV-2, 569 candidate drugs were predicted, of which 37 had been included in clinical trials for SARS-CoV-2 (AUC = 0.75, -value 3.21 × 10). As further validation, top-ranked candidate antiviral drugs were analyzed for binding to protein targets in silico; binding scores generated by BindScope indicated a 70% success rate.

摘要

本研究描述了两种互补的方法,它们利用基于网络和序列相似性的工具来识别预测可调节病毒蛋白的药物再利用机会。这种方法可以快速适应新出现的病毒。第一种方法构建并研究了病毒-宿主-物理相互作用网络,这是一种由药物靶蛋白、人类蛋白质相互作用和病毒-宿主蛋白质相互作用组成的三层多模态网络。第二种方法评估了病毒蛋白与其他蛋白质之间的序列相似性,通过构建病毒-宿主相似性相互作用网络来可视化。该方法在人类免疫缺陷病毒、乙型肝炎、丙型肝炎和人乳头瘤病毒上进行了验证,然后在 SARS-CoV-2 上进行了部署。将病毒-宿主物理相互作用预测与已知抗病毒药物进行比较,AUC 分别为 0.69、0.59、0.78 和 0.67,表明评分可预测有效药物。对于 SARS-CoV-2,预测了 569 种候选药物,其中 37 种已被纳入 SARS-CoV-2 的临床试验(AUC = 0.75,-值 3.21 × 10)。作为进一步的验证,对排名靠前的候选抗病毒药物进行了计算机模拟的蛋白靶标结合分析;BindScope 生成的结合评分表明成功率为 70%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1668/7893815/c7689824d990/LSA-2020-00904_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验