Suppr超能文献

通过调节电化学系统中的水合熵实现高效低品位热收集。

Efficient Low-Grade Heat Harvesting Enabled by Tuning the Hydration Entropy in an Electrochemical System.

作者信息

Gao Caitian, Liu Yezhou, Chen Bingbing, Yun Jeonghun, Feng Erxi, Kim Yeongae, Kim Moobum, Choi Ahreum, Lee Hyun-Wook, Lee Seok Woo

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

出版信息

Adv Mater. 2021 Apr;33(13):e2004717. doi: 10.1002/adma.202004717. Epub 2021 Feb 17.

Abstract

Harvesting of low-grade heat (<100 °C) is promising, but its application is hampered by a lack of efficient and low-cost systems. The thermally regenerative electrochemical cycle (TREC) is a potential alternative system with high energy-conversion efficiency. Here, the temperature coefficient (α), which is a key factor in a TREC, is studied by tuning the hydration entropy of the electrochemical reaction. The change of α in copper hexacyanoferrate (CuHCFe) with intercalation of different monovalent cations (Na , K , Rb , and Cs ) and a larger α value of -1.004 mV K being found in the Rb system are observed. With a view to practical application, a full cell is constructed for low-grade heat harvesting. The resultant η is 4.34% when TREC operates between 10 and 50 °C, which further reaches 6.21% when 50% heat recuperation is considered. This efficiency equals to 50% of the Carnot efficiency, which is thought to be the highest η reported for low-grade heat harvesting systems. This study provides a fundamental understanding of the mechanisms governing the TREC, and the demonstrated efficient system paves the way for low-grade heat harvesting.

摘要

收集低温热(<100°C)很有前景,但其应用受到缺乏高效且低成本系统的阻碍。热再生电化学循环(TREC)是一种具有高能量转换效率的潜在替代系统。在此,通过调节电化学反应的水合熵来研究作为TREC关键因素的温度系数(α)。观察到在不同单价阳离子(Na⁺、K⁺、Rb⁺和Cs⁺)嵌入时六氰合铁酸铜(CuHCFe)中α的变化,并且在Rb系统中发现了更大的α值 -1.004 mV K⁻¹。为了实际应用,构建了用于收集低温热的单电池。当TREC在10至50°C之间运行时,所得效率η为4.34%,当考虑50%的热回收时,该效率进一步达到6.21%。该效率相当于卡诺效率的50%,这被认为是低温热收集系统报道的最高效率η。这项研究为理解TREC的控制机制提供了基础认识,并且所展示的高效系统为低温热收集铺平了道路。

相似文献

1
Efficient Low-Grade Heat Harvesting Enabled by Tuning the Hydration Entropy in an Electrochemical System.
Adv Mater. 2021 Apr;33(13):e2004717. doi: 10.1002/adma.202004717. Epub 2021 Feb 17.
3
Membrane-free battery for harvesting low-grade thermal energy.
Nano Lett. 2014 Nov 12;14(11):6578-83. doi: 10.1021/nl5032106. Epub 2014 Oct 16.
6
Charging-free electrochemical system for harvesting low-grade thermal energy.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17011-6. doi: 10.1073/pnas.1415097111. Epub 2014 Nov 17.
8
An electrochemical system for efficiently harvesting low-grade heat energy.
Nat Commun. 2014 May 21;5:3942. doi: 10.1038/ncomms4942.
9
Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction.
ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6276-6285. doi: 10.1021/acsami.0c20464. Epub 2021 Jan 26.
10
Redox Targeting-Based Thermally Regenerative Electrochemical Cycle Flow Cell for Enhanced Low-Grade Heat Harnessing.
Adv Mater. 2021 Feb;33(5):e2006234. doi: 10.1002/adma.202006234. Epub 2020 Dec 11.

引用本文的文献

2
Tunable Electrochemical Entropy through Solvent Ordering by a Supramolecular Host.
J Am Chem Soc. 2023 Nov 22;145(46):25463-25470. doi: 10.1021/jacs.3c10145. Epub 2023 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验