Department of Chemical and Biomolecular Engineering & KI for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
J Mater Chem B. 2021 Mar 4;9(8):2084-2091. doi: 10.1039/d0tb02799e.
Preserving the self-renewal capability of undifferentiated human neural stem cells (hNSCs) is one of the crucial prerequisites for efficient hNSC-based regenerative medicine. Considering that basic fibroblast growth factor (bFGF) is one of the key contributing factors in maintaining the self-renewal property of hNSCs, the bioactivity and stability of bFGF in the hNSC culture should be regulated carefully. In this study, we developed a functional polymer film of poly(glycidyl methacrylate (GMA)-co-N,N-dimethylaminoethyl methacrylate (DMAEMA)) (coGD, or p(GMA-co-DMAEMA)) via initiated chemical vapor deposition (iCVD), which facilitated a stable, electrostatic adsorption of heparin and subsequent immobilization of bFGF. The bFGF-immobilized coGD surface substantially enhanced the proliferation rate and neurosphere forming ability of hNSCs compared to tissue culture plate (TCP). The expression of the stemness markers of hNSCs such as NESTIN and SOX-2 was also upregulated prominently on the coGD surface. Also, the hNSCs cultured on the coGD surface showed enhanced neurogenesis upon spontaneous differentiation. The immobilized bFGF on the coGD surface stimulated the expression of bFGF receptors and subsequently activated the mitogen-activated protein kinase (MAPK) pathway, attributed to the increase in self-renewal property of hNSCs. Our results indicate that the coGD surface allowed in situ heparin-mediated bFGF immobilization, which served as a robust platform to generate hNSC neurospheres with enhanced self-renewal and differentiation capabilities and thereby will prompt an advance in the field of therapeutics of neurodegenerative diseases.
保持未分化人神经干细胞(hNSC)的自我更新能力是高效基于 hNSC 的再生医学的关键前提之一。鉴于碱性成纤维细胞生长因子(bFGF)是维持 hNSC 自我更新特性的关键因素之一,因此应仔细调节 hNSC 培养物中 bFGF 的生物活性和稳定性。在这项研究中,我们通过引发化学气相沉积(iCVD)开发了一种聚(甲基丙烯酸缩水甘油酯(GMA)-co-N,N-二甲基氨基乙基甲基丙烯酸酯(DMAEMA))(共 GD,或 p(GMA-co-DMAEMA))的功能聚合物膜,该聚合物膜有利于肝素的稳定静电吸附和随后 bFGF 的固定化。与组织培养板(TCP)相比,固定化 bFGF 的共 GD 表面大大提高了 hNSC 的增殖率和神经球形成能力。hNSC 的干性标志物如 NESTIN 和 SOX-2 的表达也在共 GD 表面明显上调。此外,在共 GD 表面培养的 hNSC 在自发分化时表现出增强的神经发生。共 GD 表面固定的 bFGF 刺激了 bFGF 受体的表达,并随后激活了丝裂原激活蛋白激酶(MAPK)途径,这归因于 hNSC 自我更新特性的提高。我们的结果表明,共 GD 表面允许原位肝素介导的 bFGF 固定化,这是生成具有增强自我更新和分化能力的 hNSC 神经球的强大平台,并将推动神经退行性疾病治疗领域的发展。