Martenies Sheena E, Keller Joshua P, WeMott Sherry, Kuiper Grace, Ross Zev, Allshouse William B, Adgate John L, Starling Anne P, Dabelea Dana, Magzamen Sheryl
Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States.
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1019, United States.
Environ Sci Technol. 2021 Mar 2;55(5):3112-3123. doi: 10.1021/acs.est.0c06451. Epub 2021 Feb 17.
Studies on health effects of air pollution from local sources require exposure assessments that capture spatial and temporal trends. To facilitate intraurban studies in Denver, Colorado, we developed a spatiotemporal prediction model for black carbon (BC). To inform our model, we collected more than 700 weekly BC samples using personal air samplers from 2018 to 2020. The model incorporated spatial and spatiotemporal predictors and smoothed time trends to generate point-level weekly predictions of BC concentrations for the years 2009-2020. Our results indicate that our model reliably predicted weekly BC concentrations across the region during the year in which we collected data. We achieved a 10-fold cross-validation of 0.83 and a root-mean-square error of 0.15 μg/m for weekly BC concentrations predicted at our sampling locations. Predicted concentrations displayed expected temporal trends, with the highest concentrations predicted during winter months. Thus, our prediction model improves on typical land use regression models that generally only capture spatial gradients. However, our model is limited by a lack of long-term BC monitoring data for full validation of historical predictions. BC predictions from the weekly spatiotemporal model will be used in traffic-related air pollution exposure-disease associations more precisely than previous models for the region have allowed.
关于本地源空气污染对健康影响的研究需要进行暴露评估,以捕捉空间和时间趋势。为了便于在科罗拉多州丹佛市开展城市内部研究,我们开发了一种黑碳(BC)的时空预测模型。为了为我们的模型提供信息,我们在2018年至2020年期间使用个人空气采样器收集了700多个每周的BC样本。该模型纳入了空间和时空预测因子,并对时间趋势进行了平滑处理,以生成2009 - 2020年BC浓度的逐点每周预测值。我们的结果表明,我们的模型在收集数据的年份可靠地预测了整个地区每周的BC浓度。对于在我们采样地点预测的每周BC浓度,我们实现了10倍交叉验证值为0.83,均方根误差为0.15μg/m。预测浓度呈现出预期的时间趋势,冬季预测浓度最高。因此,我们的预测模型改进了通常仅捕捉空间梯度的典型土地利用回归模型。然而,我们的模型受到缺乏长期BC监测数据的限制,无法对历史预测进行全面验证。与该地区以前的模型相比,每周时空模型的BC预测将更精确地用于与交通相关的空气污染暴露与疾病关联研究。