Lin Pin-Cheng, Villarreal Renan, Achilli Simona, Bana Harsh, Nair Maya N, Tejeda Antonio, Verguts Ken, De Gendt Stefan, Auge Manuel, Hofsäss Hans, De Feyter Steven, Di Santo Giovanni, Petaccia Luca, Brems Steven, Fratesi Guido, Pereira Lino M C
Quantum Solid State Physics, KU Leuven, 3001 Leuven, Belgium.
ETSF and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria, 16, I-20133 Milano, Italy.
ACS Nano. 2021 Mar 23;15(3):5449-5458. doi: 10.1021/acsnano.1c00139. Epub 2021 Feb 17.
We report the incorporation of substitutional Mn atoms in high-quality, epitaxial graphene on Cu(111), using ultralow-energy ion implantation. We characterize in detail the atomic structure of substitutional Mn in a single carbon vacancy and quantify its concentration. In particular, we are able to determine the position of substitutional Mn atoms with respect to the Moiré superstructure (.., local graphene-Cu stacking symmetry) and to the carbon sublattice; in the out-of-plane direction, substitutional Mn atoms are found to be slightly displaced toward the Cu surface, that is, effectively underneath the graphene layer. Regarding electronic properties, we show that graphene doped with substitutional Mn to a concentration of the order of 0.04%, with negligible structural disorder (other than the Mn substitution), retains the Dirac-like band structure of pristine graphene on Cu(111), making it an ideal system in which to study the interplay between local magnetic moments and Dirac electrons. Our work also establishes that ultralow-energy ion implantation is suited for substitutional magnetic doping of graphene. Given the flexibility, reproducibility, and scalability inherent to ion implantation, our work creates numerous opportunities for research on magnetic functionalization of graphene and other two-dimensional materials.
我们报道了利用超低能离子注入法将替代型锰原子掺入到铜(111)上高质量的外延石墨烯中。我们详细表征了单个碳空位中替代型锰的原子结构,并对其浓度进行了量化。特别地,我们能够确定替代型锰原子相对于莫尔超结构(即局部石墨烯 - 铜堆叠对称性)以及碳亚晶格的位置;在面外方向上,发现替代型锰原子向铜表面略有位移,也就是说,实际上位于石墨烯层下方。关于电子性质,我们表明,掺杂有浓度约为0.04%的替代型锰且结构无序可忽略不计(除了锰替代之外)的石墨烯,保留了铜(111)上原始石墨烯的类狄拉克能带结构,使其成为研究局部磁矩与狄拉克电子之间相互作用的理想体系。我们的工作还证实了超低能离子注入适用于石墨烯的替代型磁掺杂。鉴于离子注入所固有的灵活性、可重复性和可扩展性,我们的工作为石墨烯及其他二维材料的磁功能化研究创造了众多机会。