文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

实时声学感应和人工智能在骨科手术中的防错应用。

Real-time acoustic sensing and artificial intelligence for error prevention in orthopedic surgery.

机构信息

Computer Aided Medical Procedures (CAMP), Technical University of Munich, 85748, Munich, Germany.

Research in Orthopedic Computer Science (ROCS), University Hospital Balgrist, University of Zurich, Balgrist Campus, 8008, Zurich, Switzerland.

出版信息

Sci Rep. 2021 Feb 17;11(1):3993. doi: 10.1038/s41598-021-83506-4.


DOI:10.1038/s41598-021-83506-4
PMID:33597615
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7889943/
Abstract

In this work, we developed and validated a computer method capable of robustly detecting drill breakthrough events and show the potential of deep learning-based acoustic sensing for surgical error prevention. Bone drilling is an essential part of orthopedic surgery and has a high risk of injuring vital structures when over-drilling into adjacent soft tissue. We acquired a dataset consisting of structure-borne audio recordings of drill breakthrough sequences with custom piezo contact microphones in an experimental setup using six human cadaveric hip specimens. In the following step, we developed a deep learning-based method for the automated detection of drill breakthrough events in a fast and accurate fashion. We evaluated the proposed network regarding breakthrough detection sensitivity and latency. The best performing variant yields a sensitivity of [Formula: see text]% for drill breakthrough detection in a total execution time of 139.29[Formula: see text]. The validation and performance evaluation of our solution demonstrates promising results for surgical error prevention by automated acoustic-based drill breakthrough detection in a realistic experiment while being multiple times faster than a surgeon's reaction time. Furthermore, our proposed method represents an important step for the translation of acoustic-based breakthrough detection towards surgical use.

摘要

在这项工作中,我们开发并验证了一种能够可靠检测钻头突破事件的计算机方法,并展示了基于深度学习的声学传感在手术错误预防方面的潜力。骨钻削是骨科手术的重要组成部分,当过度钻削到相邻的软组织时,有损伤重要结构的高风险。我们使用六个人体髋关节标本在实验设置中使用定制的压电接触式麦克风采集了一组结构传播音频记录,这些记录包含钻头突破序列。在接下来的步骤中,我们开发了一种基于深度学习的方法,用于快速准确地自动检测钻头突破事件。我们评估了所提出的网络在突破检测灵敏度和延迟方面的性能。表现最佳的变体在总执行时间为 139.29[Formula: see text]的情况下,钻头突破检测的灵敏度为[Formula: see text]%。我们的解决方案的验证和性能评估表明,在现实实验中,通过自动声学钻头突破检测进行手术错误预防具有很大的潜力,而且比外科医生的反应时间快得多。此外,我们提出的方法代表了将基于声学的突破检测转化为手术用途的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/27f4e5c45696/41598_2021_83506_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/e05dcaa5cc1d/41598_2021_83506_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/e42b69208b35/41598_2021_83506_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/f0cdfbf5c788/41598_2021_83506_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/95635982871e/41598_2021_83506_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/f6002c0297d4/41598_2021_83506_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/27f4e5c45696/41598_2021_83506_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/e05dcaa5cc1d/41598_2021_83506_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/e42b69208b35/41598_2021_83506_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/f0cdfbf5c788/41598_2021_83506_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/95635982871e/41598_2021_83506_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/f6002c0297d4/41598_2021_83506_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c294/7889943/27f4e5c45696/41598_2021_83506_Fig6_HTML.jpg

相似文献

[1]
Real-time acoustic sensing and artificial intelligence for error prevention in orthopedic surgery.

Sci Rep. 2021-2-17

[2]
Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

Int J Comput Assist Radiol Surg. 2016-3

[3]
Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery.

IEEE Trans Med Imaging. 2006-3

[4]
A New Breakthrough Detection Method for Bone Drilling in Robotic Orthopedic Surgery with Closed-Loop Control Approach.

Ann Biomed Eng. 2020-1-2

[5]
Workflow and simulation of image-to-physical registration of holes inside spongy bone.

Int J Comput Assist Radiol Surg. 2017-8

[6]
Improved accuracy of navigated drilling using a drill alignment device.

J Orthop Res. 2007-7

[7]
Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN.

Int J Comput Assist Radiol Surg. 2020-9

[8]
A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study.

Int J Med Robot. 2009-6

[9]
Minimally invasive, multi-port approach to the lateral skull base: a first in vitro evaluation.

Int J Comput Assist Radiol Surg. 2017-5

[10]
Using an admittance algorithm for bone drilling procedures.

Comput Methods Programs Biomed. 2015-10-22

引用本文的文献

[1]
Exploratory analysis and framework for tissue classification based on vibroacoustic signals from needle-tissue interaction.

Int J Comput Assist Radiol Surg. 2025-8-12

[2]
From error to prevention of wrong-level spine surgery: a review.

Patient Saf Surg. 2025-5-15

[3]
Artificial Intelligence in Spine Surgery: Imaging-Based Applications for Diagnosis and Surgical Techniques.

Curr Rev Musculoskelet Med. 2025-10

[4]
Computer vision-guided rapid and precise automated cranial microsurgeries in mice.

Sci Adv. 2025-4-11

[5]
High-reward, high-risk technologies? An ethical and legal account of AI development in healthcare.

BMC Med Ethics. 2025-1-15

[6]
Artificial Intelligence in Surgery: A Systematic Review of Use and Validation.

J Clin Med. 2024-11-24

[7]
A new sensing paradigm for the vibroacoustic detection of pedicle screw loosening.

Med Biol Eng Comput. 2025-4

[8]
Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances.

Neurospine. 2024-6

[9]
The sound of surgery-development of an acoustic trocar system enabling laparoscopic sound analysis.

Int J Comput Assist Radiol Surg. 2024-12

[10]
State-of-the-Art of Non-Radiative, Non-Visual Spine Sensing with a Focus on Sensing Forces, Vibrations and Bioelectrical Properties: A Systematic Review.

Sensors (Basel). 2023-9-26

本文引用的文献

[1]
Current applications of artificial intelligence for intraoperative decision support in surgery.

Front Med. 2020-8

[2]
Acoustic signal analysis of instrument-tissue interaction for minimally invasive interventions.

Int J Comput Assist Radiol Surg. 2020-4-22

[3]
Artificial Intelligence and Machine Learning: A New Disruptive Force in Orthopaedics.

Indian J Orthop. 2020-1-13

[4]
A New Breakthrough Detection Method for Bone Drilling in Robotic Orthopedic Surgery with Closed-Loop Control Approach.

Ann Biomed Eng. 2020-1-2

[5]
Classification of perioperative complications in spine surgery.

Spine J. 2020-5

[6]
Risk factors for robot-assisted spinal pedicle screw malposition.

Sci Rep. 2019-2-28

[7]
Novel clinical device tracking and tissue event characterization using proximally placed audio signal acquisition and processing.

Sci Rep. 2018-8-13

[8]
State Recognition of Bone Drilling Based on Acoustic Emission in Pedicle Screw Operation.

Sensors (Basel). 2018-5-9

[9]
Risk factors for perioperative morbidity in spine surgeries of different complexities: a multivariate analysis of 1,009 consecutive patients.

Spine J. 2018-2-13

[10]
Artificial Intelligence in Surgery: Promises and Perils.

Ann Surg. 2018-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索