Computer Aided Medical Procedures (CAMP), Technical University of Munich, 85748, Munich, Germany.
Research in Orthopedic Computer Science (ROCS), University Hospital Balgrist, University of Zurich, Balgrist Campus, 8008, Zurich, Switzerland.
Sci Rep. 2021 Feb 17;11(1):3993. doi: 10.1038/s41598-021-83506-4.
In this work, we developed and validated a computer method capable of robustly detecting drill breakthrough events and show the potential of deep learning-based acoustic sensing for surgical error prevention. Bone drilling is an essential part of orthopedic surgery and has a high risk of injuring vital structures when over-drilling into adjacent soft tissue. We acquired a dataset consisting of structure-borne audio recordings of drill breakthrough sequences with custom piezo contact microphones in an experimental setup using six human cadaveric hip specimens. In the following step, we developed a deep learning-based method for the automated detection of drill breakthrough events in a fast and accurate fashion. We evaluated the proposed network regarding breakthrough detection sensitivity and latency. The best performing variant yields a sensitivity of [Formula: see text]% for drill breakthrough detection in a total execution time of 139.29[Formula: see text]. The validation and performance evaluation of our solution demonstrates promising results for surgical error prevention by automated acoustic-based drill breakthrough detection in a realistic experiment while being multiple times faster than a surgeon's reaction time. Furthermore, our proposed method represents an important step for the translation of acoustic-based breakthrough detection towards surgical use.
在这项工作中,我们开发并验证了一种能够可靠检测钻头突破事件的计算机方法,并展示了基于深度学习的声学传感在手术错误预防方面的潜力。骨钻削是骨科手术的重要组成部分,当过度钻削到相邻的软组织时,有损伤重要结构的高风险。我们使用六个人体髋关节标本在实验设置中使用定制的压电接触式麦克风采集了一组结构传播音频记录,这些记录包含钻头突破序列。在接下来的步骤中,我们开发了一种基于深度学习的方法,用于快速准确地自动检测钻头突破事件。我们评估了所提出的网络在突破检测灵敏度和延迟方面的性能。表现最佳的变体在总执行时间为 139.29[Formula: see text]的情况下,钻头突破检测的灵敏度为[Formula: see text]%。我们的解决方案的验证和性能评估表明,在现实实验中,通过自动声学钻头突破检测进行手术错误预防具有很大的潜力,而且比外科医生的反应时间快得多。此外,我们提出的方法代表了将基于声学的突破检测转化为手术用途的重要一步。
Int J Comput Assist Radiol Surg. 2016-3
IEEE Trans Med Imaging. 2006-3
Int J Comput Assist Radiol Surg. 2017-8
J Orthop Res. 2007-7
Int J Comput Assist Radiol Surg. 2020-9
Int J Comput Assist Radiol Surg. 2017-5
Comput Methods Programs Biomed. 2015-10-22
Int J Comput Assist Radiol Surg. 2025-8-12
Patient Saf Surg. 2025-5-15
Curr Rev Musculoskelet Med. 2025-10
BMC Med Ethics. 2025-1-15
J Clin Med. 2024-11-24
Med Biol Eng Comput. 2025-4
Int J Comput Assist Radiol Surg. 2024-12
Int J Comput Assist Radiol Surg. 2020-4-22
Indian J Orthop. 2020-1-13
Sci Rep. 2019-2-28
Sensors (Basel). 2018-5-9
Ann Surg. 2018-7