Wyatt Brian C, Nemani Srinivasa Kartik, Desai Krishay, Kaur Harpreet, Zhang Bowen, Anasori Babak
Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States of America.
Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States of America.
J Phys Condens Matter. 2021 May 5;33(22). doi: 10.1088/1361-648X/abe793.
Two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, known as MXenes, are under increasing pressure to meet technological demands in high-temperature applications, as MXenes can be considered to be one of the few ultra-high temperature 2D materials. Although there are studies on the stability of their surface functionalities, there is currently a gap in the fundamental understanding of their phase stability and transformation of MXenes' metal carbide core at high temperatures (>700 °C) in an inert environment. In this study, we conduct systematic annealing of TiCTMXene films in which we present the 2D MXene flake phase transformation to ordered vacancy superstructure of a bulk three-dimensional (3D) TiC and TiCcrystals at 700 °C ⩽⩽ 1000 °C with subsequent transformation to disordered carbon vacancy cubic TiCat higher temperatures (> 1000 °C). We annealed TiCTMXene films made from the delaminated MXene single-flakes as well as the multi-layer MXene clay in a controlled environment through the use ofhot stage x-ray diffraction (XRD) paired with a 2D detector (XRD) up to 1000 °C andannealing in a tube furnace and spark plasma sintering up to 1500 °C. Our XRDanalysis paired with cross-sectional scanning electron microscope imaging indicated the resulting nano-sized lamellar and micron-sized cubic grain morphology of the 3D crystals depend on the starting TiCTform. While annealing the multi-layer clay TiCTMXene creates TiCgrains with cubic and irregular morphology, the grains of 3D TiC and TiCformed by annealing TiCTMXene single-flake films keep MXenes' lamellar morphology. The ultrathin lamellar nature of the 3D grains formed at temperatures >1000 °C can pave way for applications of MXenes as a stable carbide material 2D additive for high-temperature applications.
二维(2D)过渡金属碳化物、氮化物和碳氮化物,即MXenes,在满足高温应用中的技术需求方面面临着越来越大的压力,因为MXenes可被视为少数几种超高温二维材料之一。尽管已有关于其表面官能团稳定性的研究,但目前在惰性环境中,对于MXenes金属碳化物核心在高温(>700°C)下的相稳定性和转变的基本理解仍存在差距。在本研究中,我们对TiCT MXene薄膜进行了系统退火,展示了二维MXene薄片在700°C至1000°C转变为块状三维(3D)TiC和TiC晶体的有序空位超结构,随后在更高温度(>1000°C)转变为无序碳空位立方TiC。我们通过使用配备二维探测器的热台X射线衍射(XRD)在可控环境中对由分层的MXene单薄片以及多层MXene粘土制成的TiCT MXene薄膜进行退火,温度可达1000°C,并在管式炉中退火以及在火花等离子体烧结中退火,温度可达1500°C。我们的XRD分析与横截面扫描电子显微镜成像表明,所得3D晶体的纳米级层状和微米级立方晶粒形态取决于起始的TiCT形式。对多层粘土TiCT MXene进行退火时会形成具有立方和不规则形态的TiC晶粒,而对TiCT MXene单薄片薄膜进行退火形成的3D TiC和TiC晶粒则保持MXenes的层状形态。在温度>1000°C下形成的3D晶粒的超薄层状性质可为MXenes作为高温应用中稳定的碳化物材料二维添加剂的应用铺平道路。