Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA.
CREAF, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain.
Tree Physiol. 2021 Aug 11;41(8):1353-1371. doi: 10.1093/treephys/tpab021.
Tree growth is generally considered to be temperature limited at upper elevation treelines, yet climate factors controlling tree growth at semiarid treelines are poorly understood. We explored the influence of climate on stem growth and stable isotopes for Polylepis tarapacana Philipi, the world's highest elevation tree species, which is found only in the South American Altiplano. We developed tree-ring width index (RWI), oxygen (δ18O) and carbon (δ13C) chronologies for the last 60 years at four P. tarapacana stands located above 4400 m in elevation, along a 500 km latitude aridity gradient. Total annual precipitation decreased from 300 to 200 mm from the northern to the southern sites. We used RWI as a proxy of wood formation (carbon sink) and isotopic tree-ring signatures as proxies of leaf-level gas exchange processes (carbon source). We found distinct climatic conditions regulating carbon sink processes along the gradient. Current growing-season temperature regulated RWI at northern-wetter sites, while prior growing-season precipitation determined RWI at arid southern sites. This suggests that the relative importance of temperature to precipitation in regulating tree growth is driven by site water availability. By contrast, warm and dry growing seasons resulted in enriched tree-ring δ13C and δ18O at all study sites, suggesting that similar climate conditions control carbon-source processes along the gradient. Site-level δ13C and δ18O chronologies were significantly and positively related at all sites, with the strongest relationships among the southern drier stands. This indicates an overall regulation of intercellular carbon dioxide via stomatal conductance for the entire P. tarapacana network, with greater stomatal control when aridity increases. This manuscript also highlights a coupling (decoupling) between physiological processes at leaf level and wood formation as a function of similarities (differences) in their climatic sensitivity. This study contributes to a better understanding and prediction of the response of high-elevation Polylepis woodlands to rapid climate changes and projected drying in the Altiplano.
树木生长通常被认为在上限树线受温度限制,但半干旱树线控制树木生长的气候因素仍知之甚少。我们探索了气候对仅在南美安第斯高原发现的世界上海拔最高的树种 Polylepis tarapacana Philipi 的茎生长和稳定同位素的影响。我们为位于海拔 4400 米以上的四个 P. tarapacana 种群开发了过去 60 年的树木年轮宽度指数 (RWI)、氧 (δ18O) 和碳 (δ13C) 年表,这些种群沿 500 公里的纬度干旱梯度分布。总年降水量从北到南从 300 毫米减少到 200 毫米。我们将 RWI 用作木材形成(碳汇)的代理,将同位素树木年轮特征用作叶片级气体交换过程(碳源)的代理。我们发现,沿梯度存在明显的气候条件调节碳汇过程。当前生长季节温度调节了较湿润北部地点的 RWI,而前生长季节降水决定了干旱南部地点的 RWI。这表明,温度相对于降水在调节树木生长中的相对重要性是由地点的水分可用性驱动的。相比之下,温暖和干燥的生长季节导致所有研究地点的树木年轮 δ13C 和 δ18O 富集,表明沿梯度相似的气候条件控制着碳源过程。所有地点的站点水平 δ13C 和 δ18O 年表均呈显著正相关,南部较干燥的站点之间的关系最强。这表明,通过气孔导度对整个 P. tarapacana 网络中的细胞间二氧化碳进行了总体调节,随着干旱程度的增加,气孔控制作用更大。本文还强调了叶片水平生理过程与木材形成之间的耦合(解耦),这是其对气候敏感性相似(差异)的功能。本研究有助于更好地理解和预测快速气候变化和安第斯高原预计干旱对高海拔 Polylepis 林地的响应。