Suppr超能文献

用边界均匀化方法评估膜通道中缩窄处的扩散阻力。

Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization.

作者信息

Skvortsov Alexei T, Dagdug Leonardo, Berezhkovskii Alexander M, MacGillivray Ian R, Bezrukov Sergey M

机构信息

Maritime Division, Defence Science and Technology, Fishermans Bend, VIC 3207, Australia.

Physics Department, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico.

出版信息

Phys Rev E. 2021 Jan;103(1-1):012408. doi: 10.1103/PhysRevE.103.012408.

Abstract

In this paper we analyze diffusive transport of noninteracting electrically uncharged solute molecules through a cylindrical membrane channel with a constriction located in the middle of the channel. The constriction is modeled by an infinitely thin partition with a circular hole in its center. The focus is on how the presence of the partition slows down the transport governed by the difference in the solute concentrations in the two reservoirs separated by the membrane. It is assumed that the solutions in both reservoirs are well stirred. To quantify the effect of the constriction we use the notion of diffusion resistance defined as the ratio of the concentration difference to the steady-state flux. We show that when the channel length exceeds its radius, the diffusion resistance is the sum of the diffusion resistance of the cylindrical channel without a partition and an additional diffusion resistance due to the presence of the partition. We derive an expression for the additional diffusion resistance as a function of the tube radius and that of the hole in the partition. The derivation involves the replacement of the nonpermeable partition with the hole by an effective uniform semipermeable partition with a properly chosen permeability. Such a replacement makes it possible to reduce the initial three-dimensional diffusion problem to a one-dimensional one that can be easily solved. To determine the permeability of the effective partition, we take advantage of the results found earlier for trapping of diffusing particles by inhomogeneous surfaces, which were obtained with the method of boundary homogenization. Brownian dynamics simulations are used to corroborate our approximate analytical results and to establish the range of their applicability.

摘要

在本文中,我们分析了不带电的非相互作用溶质分子通过圆柱形膜通道的扩散输运,该通道在中间位置有一个收缩区。收缩区由一个无限薄的隔板模拟,隔板中心有一个圆孔。重点在于隔板的存在如何减缓由膜分隔的两个储液器中溶质浓度差异所控制的输运。假设两个储液器中的溶液充分搅拌。为了量化收缩区的影响,我们使用扩散阻力的概念,其定义为浓度差与稳态通量之比。我们表明,当通道长度超过其半径时,扩散阻力是无隔板圆柱形通道的扩散阻力与由于隔板存在而产生的附加扩散阻力之和。我们推导了附加扩散阻力作为管半径和隔板上孔半径的函数的表达式。推导过程涉及用具有适当选择渗透率的有效均匀半透膜隔板替换带有孔的不可渗透隔板。这样的替换使得可以将初始的三维扩散问题简化为一个易于求解的一维问题。为了确定有效隔板的渗透率,我们利用了早期通过边界均匀化方法获得的关于非均匀表面捕获扩散粒子的结果。使用布朗动力学模拟来证实我们的近似解析结果并确定其适用范围。

相似文献

2
Solute translocation probability, lifetime, and "rectification" in membrane channels with localized constriction.
Phys Chem Chem Phys. 2024 May 29;26(21):15758-15764. doi: 10.1039/d4cp00689e.
6
Diffusion Resistance of Segmented Channels.
J Phys Chem B. 2023 Aug 24;127(33):7291-7298. doi: 10.1021/acs.jpcb.3c04520. Epub 2023 Aug 11.
8
Memoryless control of boundary concentrations of diffusing particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 1):061106. doi: 10.1103/PhysRevE.70.061106. Epub 2004 Dec 22.
9
Boundary homogenization for trapping by patchy surfaces.
J Chem Phys. 2004 Dec 8;121(22):11390-4. doi: 10.1063/1.1814351.
10
Diffusion-limited binding to a site on the wall of a membrane channel.
J Chem Phys. 2006 Dec 28;125(24):244705. doi: 10.1063/1.2409682.

引用本文的文献

1
Blockage coefficient of cylindrical blocker and diffusion resistance of membrane channels.
Phys Fluids (1994). 2023 Jan;35(1):011702. doi: 10.1063/5.0135305. Epub 2023 Jan 5.
2
Blocker Effect on Diffusion Resistance of a Membrane Channel: Dependence on the Blocker Geometry.
J Phys Chem B. 2022 Aug 18;126(32):6016-6025. doi: 10.1021/acs.jpcb.2c00715. Epub 2022 Aug 9.

本文引用的文献

1
Mean first passage time for a particle diffusing on a disk with two absorbing traps at the boundary.
Phys Rev E. 2020 Jul;102(1-1):012123. doi: 10.1103/PhysRevE.102.012123.
2
Trapping of diffusing particles by periodic absorbing rings on a cylindrical tube.
J Chem Phys. 2019 May 28;150(20):206101. doi: 10.1063/1.5098390.
4
Boundary homogenization for a sphere with an absorbing cap of arbitrary size.
J Chem Phys. 2016 Dec 7;145(21):214101. doi: 10.1063/1.4968598.
6
Ion permeation in K⁺ channels occurs by direct Coulomb knock-on.
Science. 2014 Oct 17;346(6207):352-5. doi: 10.1126/science.1254840.
7
Trapping of diffusive particles by rough absorbing surfaces: boundary smoothing approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):023202. doi: 10.1103/PhysRevE.90.023202. Epub 2014 Aug 15.
8
Trapping by clusters of channels, receptors, and transporters: quantitative description.
Biophys J. 2014 Feb 4;106(3):500-9. doi: 10.1016/j.bpj.2013.12.015.
9
The 3D structures of VDAC represent a native conformation.
Trends Biochem Sci. 2010 Sep;35(9):514-21. doi: 10.1016/j.tibs.2010.03.005. Epub 2010 Aug 12.
10
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17742-7. doi: 10.1073/pnas.0809634105. Epub 2008 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验