Suppr超能文献

氧化应激下非心肌细胞与心肌细胞界面处的促心律失常性电重构

Proarrhythmic Electrical Remodeling by Noncardiomyocytes at Interfaces With Cardiomyocytes Under Oxidative Stress.

作者信息

Zhao Yali, Iyer Shankar, Tavanaei Maryam, Nguyen Nicole T, Lin Andrew, Nguyen Thao P

机构信息

Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.

出版信息

Front Physiol. 2021 Feb 2;11:622613. doi: 10.3389/fphys.2020.622613. eCollection 2020.

Abstract

Life-threatening ventricular arrhythmias, typically arising from interfaces between fibrosis and surviving cardiomyocytes, are feared sequelae of structurally remodeled hearts under oxidative stress. Incomplete understanding of the proarrhythmic electrical remodeling by fibrosis limits the development of novel antiarrhythmic strategies. To define the mechanistic determinants of the proarrhythmia in electrical crosstalk between cardiomyocytes and noncardiomyocytes, we developed a novel model of interface between neonatal rat ventricular cardiomyocytes (NRVMs) and controls [NRVMs or connexin43 (Cx43)-deficient HeLa cells] vs. Cx43 noncardiomyocytes [aged rat ventricular myofibroblasts (ARVFs) or HeLaCx43 cells]. We performed high-speed voltage-sensitive optical imaging at baseline and following acute HO exposure. In NRVM-NRVM and NRVM-HeLa controls, no arrhythmias occurred under either experimental condition. In the NRVM-ARVF and NRVM-HeLaCx43 groups, Cx43 noncardiomyocytes enabled passive decremental propagation of electrical impulses and impaired NRVM activation and repolarization, thereby slowing conduction and prolonging action potential duration. Following HO exposure, arrhythmia triggers, automaticity, and non-reentrant and reentrant arrhythmias emerged. This study reveals that myofibroblasts (which generate cardiac fibrosis) and other noncardiomyocytes can induce not only structural remodeling but also electrical remodeling and that electrical remodeling by noncardiomyocytes can be particularly arrhythmogenic in the presence of an oxidative burst. Synergistic electrical remodeling between HO and noncardiomyocytes may account for the clinical arrhythmogenicity of myofibroblasts at fibrotic interfaces with cardiomyocytes in ischemic/non-ischemic cardiomyopathies. Understanding the enhanced arrhythmogenicity of synergistic electrical remodeling by HO and noncardiomyocytes may guide novel safe-by-design antiarrhythmic strategies for next-generation iatrogenic interfaces between surviving native cardiomyocytes and exogenous stem cells or engineered tissues in cardiac regenerative therapies.

摘要

危及生命的室性心律失常通常源于纤维化区域与存活心肌细胞之间的界面,是氧化应激下结构重塑心脏令人担忧的后遗症。对纤维化所致致心律失常性电重构的不完全理解限制了新型抗心律失常策略的发展。为了确定心肌细胞与非心肌细胞之间电串扰中致心律失常的机制决定因素,我们构建了一种新型模型,即新生大鼠心室心肌细胞(NRVMs)与对照组[NRVMs或连接蛋白43(Cx43)缺陷的HeLa细胞]与Cx43非心肌细胞[成年大鼠心室肌成纤维细胞(ARVFs)或HeLaCx43细胞]之间的界面模型。我们在基线以及急性过氧化氢(HO)暴露后进行了高速电压敏感染光成像。在NRVM-NRVM和NRVM-HeLa对照组中,两种实验条件下均未发生心律失常。在NRVM-ARVF和NRVM-HeLaCx43组中,Cx43非心肌细胞使电冲动能够被动递减传播,并损害NRVM的激活和复极化,从而减慢传导并延长动作电位时程。HO暴露后,出现了心律失常触发因素、自律性以及非折返性和折返性心律失常。本研究表明,肌成纤维细胞(可导致心脏纤维化)和其他非心肌细胞不仅可诱导结构重塑,还可诱导电重构,并且在存在氧化爆发的情况下,非心肌细胞引起的电重构可能特别具有致心律失常性。HO与非心肌细胞之间的协同电重构可能解释了缺血性/非缺血性心肌病中肌成纤维细胞在与心肌细胞纤维化界面处的临床致心律失常性。了解HO与非心肌细胞协同电重构增强的致心律失常性,可能为心脏再生治疗中存活的天然心肌细胞与外源性干细胞或工程组织之间的下一代医源性界面,指导设计新型安全的抗心律失常策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac07/7884825/80761bb5b66d/fphys-11-622613-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验