Gao Yue, Zhou Xiang, Zhang Miao-Miao, Liu Ya-Jun, Guo Xiao-Peng, Lei Cai-Rong, Li Wen-Jian, Lu Dong
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.
Appl Microbiol Biotechnol. 2021 Mar;105(6):2455-2472. doi: 10.1007/s00253-021-11174-5. Epub 2021 Feb 19.
Butanol inhibits bacterial activity by destroying the cell membrane of Clostridium acetobutylicum strains and altering functionality. Butanol toxicity also results in destruction of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS), thereby preventing glucose transport and phosphorylation and inhibiting transmembrane transport and assimilation of sugars, amino acids, and other nutrients. In this study, based on the addition of exogenous butanol, the tangible macro indicators of changes in the carbon ion beam irradiation-mutant Y217 morphology were observed using scanning electron microscopy (SEM). The mutant has lower microbial adhesion to hydrocarbon (MATH) value than C. acetobutylicum ATCC 824 strain. FDA fluorescence intensity and conductivity studies demonstrated the intrinsically low membrane permeability of the mutant membrane, with membrane potential remaining relatively stable. Monounsaturated FAs (MUFAs) accounted for 35.17% of the mutant membrane, and the saturated fatty acids (SFA)/unsaturated fatty acids (UFA) ratio in the mutant cell membrane was 1.65. In addition, we conducted DNA-level analysis of the mutant strain Y217. Expectedly, through screening, we found gene mutant sites encoding membrane-related functions in the mutant, including ATP-binding cassette (ABC) transporter-related genes, predicted membrane proteins, and the PTS transport system. It is noteworthy that an unreported predicted membrane protein (CAC 3309) may be related to changes in mutant cell membrane properties. KEY POINTS: • Mutant Y217 exhibited better membrane integrity and permeability. • Mutant Y217 was more resistant to butanol toxicity. • Some membrane-related genes of mutant Y217 were mutated.
丁醇通过破坏丙酮丁醇梭菌菌株的细胞膜并改变其功能来抑制细菌活性。丁醇毒性还会导致磷酸烯醇丙酮酸 - 碳水化合物磷酸转移酶系统(PTS)的破坏,从而阻止葡萄糖的运输和磷酸化,并抑制糖、氨基酸和其他营养物质的跨膜运输和同化。在本研究中,基于添加外源丁醇,使用扫描电子显微镜(SEM)观察了碳离子束辐照突变体Y217形态变化的明显宏观指标。该突变体的微生物对烃类的粘附(MATH)值低于丙酮丁醇梭菌ATCC 824菌株。FDA荧光强度和电导率研究表明,突变体膜的固有膜通透性较低,膜电位保持相对稳定。单不饱和脂肪酸(MUFAs)占突变体膜的35.17%,突变体细胞膜中的饱和脂肪酸(SFA)/不饱和脂肪酸(UFA)比率为1.65。此外,我们对突变菌株Y217进行了DNA水平分析。不出所料,通过筛选,我们在突变体中发现了编码与膜相关功能的基因突变位点,包括ATP结合盒(ABC)转运蛋白相关基因、预测的膜蛋白和PTS转运系统。值得注意的是,一种未报道的预测膜蛋白(CAC 3309)可能与突变体细胞膜特性的变化有关。
• 突变体Y217表现出更好的膜完整性和通透性。
• 突变体Y217对丁醇毒性更具抗性。
• 突变体Y217的一些与膜相关的基因发生了突变。