Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington United States.
Anal Chem. 2021 Mar 2;93(8):3830-3838. doi: 10.1021/acs.analchem.0c04341. Epub 2021 Feb 19.
The prediction of structure dependent molecular properties, such as collision cross sections as measured using ion mobility spectrometry, are crucially dependent on the selection of the correct population of molecular conformers. Here, we report an in-depth evaluation of multiple conformation selection techniques, including simple averaging, Boltzmann weighting, lowest energy selection, low energy threshold reductions, and similarity reduction. Generating 50 000 conformers each for 18 molecules, we used the In Silico Chemical Library Engine (ISiCLE) to calculate the collision cross sections for the entire data set. First, we employed Monte Carlo simulations to understand the variability between conformer structures as generated using simulated annealing. Then we employed Monte Carlo simulations to the aforementioned conformer selection techniques applied on the simulated molecular property: the ion mobility collision cross section. Based on our analyses, we found Boltzmann weighting to be a good trade-off between precision and theoretical accuracy. Combining multiple techniques revealed that energy thresholds and root-mean-squared deviation-based similarity reductions can save considerable computational expense while maintaining property prediction accuracy. Molecular dynamic conformer generation tools like AMBER can continue to generate new lowest energy conformers even after tens of thousands of generations, decreasing precision between runs. This reduced precision can be ameliorated and theoretical accuracy increased by running density functional theory geometry optimization on carefully selected conformers.
结构相关分子性质的预测,如使用离子淌度谱法测量的碰撞截面,很大程度上取决于正确的分子构象群体的选择。在这里,我们报告了对多种构象选择技术的深入评估,包括简单平均、玻尔兹曼加权、最低能量选择、低能量阈值降低和相似性降低。为 18 个分子中的每个分子生成 50000 个构象,我们使用 In Silico Chemical Library Engine(ISiCLE)计算整个数据集的碰撞截面。首先,我们使用蒙特卡罗模拟来理解使用模拟退火生成的构象结构之间的可变性。然后,我们将蒙特卡罗模拟应用于上述构象选择技术,用于模拟分子性质:离子淌度碰撞截面。根据我们的分析,我们发现玻尔兹曼加权是在精度和理论准确性之间的良好折衷。结合多种技术表明,能量阈值和均方根偏差为基础的相似性降低可以在保持属性预测准确性的同时节省大量计算费用。像 AMBER 这样的分子动力学构象生成工具可以在数万次生成后继续生成新的最低能量构象,从而降低运行之间的精度。通过对精心选择的构象进行密度泛函理论几何优化,可以改善这种降低的精度并提高理论准确性。