Suppr超能文献

基于各向异性扩散和图像增强的可见光与红外图像融合算法(仅将标题(或标题)、副标题(或副标题)中的第一个单词以及任何专有名词大写)。

Fusion algorithm of visible and infrared image based on anisotropic diffusion and image enhancement (capitalize only the first word in a title (or heading), the first word in a subtitle (or subheading), and any proper nouns).

机构信息

Artificial Intelligence Key Laboratory of Sichuan Province, Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China.

School of Information Engineering, Southwest University of Science and Technology, Mianyang, China.

出版信息

PLoS One. 2021 Feb 19;16(2):e0245563. doi: 10.1371/journal.pone.0245563. eCollection 2021.

Abstract

Aiming at the situation that the existing visible and infrared images fusion algorithms only focus on highlighting infrared targets and neglect the performance of image details, and cannot take into account the characteristics of infrared and visible images, this paper proposes an image enhancement fusion algorithm combining Karhunen-Loeve transform and Laplacian pyramid fusion. The detail layer of the source image is obtained by anisotropic diffusion to get more abundant texture information. The infrared images adopt adaptive histogram partition and brightness correction enhancement algorithm to highlight thermal radiation targets. A novel power function enhancement algorithm that simulates illumination is proposed for visible images to improve the contrast of visible images and facilitate human observation. In order to improve the fusion quality of images, the source image and the enhanced images are transformed by Karhunen-Loeve to form new visible and infrared images. Laplacian pyramid fusion is performed on the new visible and infrared images, and superimposed with the detail layer images to obtain the fusion result. Experimental results show that the method in this paper is superior to several representative image fusion algorithms in subjective visual effects on public data sets. In terms of objective evaluation, the fusion result performed well on the 8 evaluation indicators, and its own quality was high.

摘要

针对现有可见光和红外图像融合算法仅注重突出红外目标而忽略图像细节性能,不能兼顾红外和可见光图像特点的情况,本文提出了一种基于 Karhunen-Loeve 变换和拉普拉斯金字塔融合的图像增强融合算法。通过各向异性扩散得到源图像的细节层,以获取更丰富的纹理信息。对红外图像采用自适应直方图分区和亮度校正增强算法,突出热辐射目标。针对可见光图像,提出了一种新颖的幂函数增强算法,模拟光照,提高可见光图像的对比度,便于人眼观察。为了提高图像的融合质量,对源图像和增强后的图像进行 Karhunen-Loeve 变换,形成新的可见光和红外图像。对新的可见光和红外图像进行拉普拉斯金字塔融合,并与细节层图像叠加,得到融合结果。实验结果表明,本文方法在公共数据集上的主观视觉效果优于几种有代表性的图像融合算法。在客观评价方面,融合结果在 8 个评价指标上表现良好,自身质量较高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9971/7894873/c47479d27204/pone.0245563.g001.jpg

相似文献

2
Infrared and Visible Image Fusion Based on Visual Saliency Map and Image Contrast Enhancement.
Sensors (Basel). 2022 Aug 25;22(17):6390. doi: 10.3390/s22176390.
3
SDAM: A dual attention mechanism for high-quality fusion of infrared and visible images.
PLoS One. 2024 Sep 24;19(9):e0308885. doi: 10.1371/journal.pone.0308885. eCollection 2024.
4
Infrared and visible image fusion algorithm based on spatial domain and image features.
PLoS One. 2022 Dec 30;17(12):e0278055. doi: 10.1371/journal.pone.0278055. eCollection 2022.
5
Fusing Infrared and Visible Images of Different Resolutions via Total Variation Model.
Sensors (Basel). 2018 Nov 8;18(11):3827. doi: 10.3390/s18113827.
6
Infrared image detail enhancement based on the gradient field specification.
Appl Opt. 2014 Jul 1;53(19):4141-9. doi: 10.1364/AO.53.004141.
7
Fusion of visible and infrared images using GE-WA model and VGG-19 network.
Sci Rep. 2023 Jan 5;13(1):190. doi: 10.1038/s41598-023-27391-z.
8
Infrared and visible image fusion method of dual NSCT and PCNN.
PLoS One. 2020 Sep 18;15(9):e0239535. doi: 10.1371/journal.pone.0239535. eCollection 2020.
9
Multimodal medical image fusion via laplacian pyramid and convolutional neural network reconstruction with local gradient energy strategy.
Comput Biol Med. 2020 Nov;126:104048. doi: 10.1016/j.compbiomed.2020.104048. Epub 2020 Oct 8.
10
[Perceptual sharpness metric for visible and infrared color fusion images].
Guang Pu Xue Yu Guang Pu Fen Xi. 2012 Dec;32(12):3197-202.

引用本文的文献

1
Multi-scale fusion framework via retinex and transmittance optimization for underwater image enhancement.
PLoS One. 2022 Sep 26;17(9):e0275107. doi: 10.1371/journal.pone.0275107. eCollection 2022.
2
Combining Regional Energy and Intuitionistic Fuzzy Sets for Infrared and Visible Image Fusion.
Sensors (Basel). 2021 Nov 24;21(23):7813. doi: 10.3390/s21237813.
3
Correction: Fusion algorithm of visible and infrared image based on anisotropic diffusion and image enhancement.
PLoS One. 2021 Mar 30;16(3):e0249546. doi: 10.1371/journal.pone.0249546. eCollection 2021.

本文引用的文献

2
Image fusion with guided filtering.
IEEE Trans Image Process. 2013 Jul;22(7):2864-75. doi: 10.1109/TIP.2013.2244222. Epub 2013 Jan 30.
3
Generalized random walks for fusion of multi-exposure images.
IEEE Trans Image Process. 2011 Dec;20(12):3634-46. doi: 10.1109/TIP.2011.2150235. Epub 2011 May 5.
4
The contourlet transform: an efficient directional multiresolution image representation.
IEEE Trans Image Process. 2005 Dec;14(12):2091-106. doi: 10.1109/tip.2005.859376.
5
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.
6
Spatial frequency analysis in the visual system.
Annu Rev Neurosci. 1985;8:547-83. doi: 10.1146/annurev.ne.08.030185.002555.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验