Department of Urology, Yale University, New Haven, CT, United States of America; School of Pharmacy, University College London, London, UK.
Department of Urology, Yale University, New Haven, CT, United States of America.
J Control Release. 2021 Apr 10;332:210-224. doi: 10.1016/j.jconrel.2021.02.007. Epub 2021 Feb 17.
Short dwell-time and poor penetration of the bladder permeability barrier (BPB) are the main obstacles to intravesical treatments for bladder diseases, and is evidenced by the lack of such therapeutic options on the market. Herein, we demonstrate that by finely tuning the molecular weight of our cationic polymer mucoadhesive nanoparticles, we enhanced our gene transfer, leading to improved adherence and penetrance through the BPB in a safe and efficient manner. Specifically, increasing the polymer molecular weight from 45 kDa to 83 kDa enhanced luciferase plasmid transfer to the healthy murine bladder, leading to 1.35 ng/g luciferase protein expression in the urothelium and lamina propria regions. The relatively higher molecular weight polymer (83 kDa) did not induce morphologic changes or inflammatory responses in the bladder. This approach of altering polymer molecular weight for prolonging gene transfer residence time and deeper penetration through the BPB could be the basis for the design of future gene therapies for bladder diseases.
膀胱通透性屏障 (BPB) 的短驻留时间和差通透性是膀胱疾病腔内治疗的主要障碍,这一点从市场上缺乏此类治疗选择就可以得到证明。在此,我们证明通过精细调整阳离子聚合物黏附纳米颗粒的分子量,我们增强了基因转移,以安全有效的方式提高了对 BPB 的黏附和通透性。具体而言,将聚合物分子量从 45 kDa 增加到 83 kDa 增强了荧光素酶质粒向健康小鼠膀胱的转移,导致尿路上皮和固有层区域的 1.35ng/g 荧光素酶蛋白表达。相对较高分子量的聚合物 (83 kDa) 不会引起膀胱的形态变化或炎症反应。这种改变聚合物分子量以延长基因转移驻留时间并通过 BPB 更深层渗透的方法可能为未来膀胱疾病的基因治疗设计提供基础。