Suppr超能文献

高频通气期间稳定气流和条件性湍流对气体传输的影响。

The impact of steady streaming and conditional turbulence on gas transport during high-frequency ventilation.

作者信息

Jacob Chinthaka, Tingay David G, Leontini Justin S

机构信息

Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122 Australia.

Murdoch Children's Research Institute, Melbourne, VIC 3052 Australia.

出版信息

Theor Comput Fluid Dyn. 2021;35(2):265-291. doi: 10.1007/s00162-020-00559-3. Epub 2021 Feb 15.

Abstract

High-frequency ventilation is a type of mechanical ventilation therapy applied on patients with damaged or delicate lungs. However, the transport of oxygen down, and carbon dioxide up, the airway is governed by subtle transport processes which hitherto have been difficult to quantify. We investigate one of these mechanisms in detail, nonlinear mean streaming, and the impact of the onset of turbulence on this streaming, via direct numerical simulations of a model 1:2 bifurcating pipe. This geometry is investigated as a minimal unit of the fractal structure of the airway. We first quantify the amount of gas recirculated via mean streaming by measuring the recirculating flux in both the upper and lower branches of the bifurcation. For conditions modeling the trachea-to-bronchi bifurcation of an infant, we find the recirculating flux is of the order of 3-5% of the peak flux . We also show that for conditions modeling the upper generations, the mean recirculation regions extend a significant distance away from the bifurcation, certainly far enough to recirculate gas between generations. We show that this mean streaming flow is driven by the formation of longitudinal vortices in the flow leaving the bifurcation. Second, we show that conditional turbulence arises in the upper generations of the airway. This turbulence appears only in the flow leaving the bifurcation, and at a point in the cycle centered around the maximum instantaneous flow rate. We hypothesize that its appearance is due to an instability of the longitudinal-vortices structure.

摘要

高频通气是一种应用于肺部受损或脆弱患者的机械通气治疗方法。然而,氧气沿气道向下传输以及二氧化碳沿气道向上传输,是由一些微妙的传输过程所控制的,而这些过程至今仍难以量化。我们通过对一个1:2分叉管道模型进行直接数值模拟,详细研究了其中一种机制——非线性平均流,以及湍流的出现对这种流的影响。研究这种几何结构是将其作为气道分形结构的一个最小单元。我们首先通过测量分叉上下分支中的再循环通量来量化通过平均流再循环的气体量。对于模拟婴儿气管到支气管分叉的条件,我们发现再循环通量约为峰值通量的3% - 5%。我们还表明,对于模拟上一级分支的条件,平均再循环区域从分叉处延伸出相当远的距离,肯定远到足以在不同级分支之间再循环气体。我们表明这种平均流是由离开分叉处的气流中纵向涡旋的形成所驱动的。其次,我们表明在气道的上一级分支中会出现条件性湍流。这种湍流仅出现在离开分叉处的气流中,且出现在以最大瞬时流速为中心的周期中的某个点。我们推测其出现是由于纵向涡旋结构的不稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2cb/7883339/15399a62ea52/162_2020_559_Fig1_HTML.jpg

相似文献

1
The impact of steady streaming and conditional turbulence on gas transport during high-frequency ventilation.
Theor Comput Fluid Dyn. 2021;35(2):265-291. doi: 10.1007/s00162-020-00559-3. Epub 2021 Feb 15.
2
The Influence of Airway Tree Geometry and Ventilation Frequency on Airflow Distribution.
J Biomech Eng. 2015 Aug;137(8):081001. doi: 10.1115/1.4030621. Epub 2015 Jun 9.
3
Oscillatory flow and gas transport through a symmetrical bifurcation.
J Biomech Eng. 2001 Apr;123(2):145-53. doi: 10.1115/1.1352735.
4
Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways.
Respir Physiol Neurobiol. 2007 Aug 1;157(2-3):295-309. doi: 10.1016/j.resp.2007.02.006. Epub 2007 Feb 14.
6
Nonlinear model for mechanical ventilation of human lungs.
Comput Biol Med. 2006 Jan;36(1):41-58. doi: 10.1016/j.compbiomed.2004.08.001. Epub 2004 Dec 2.
7
Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
Ann Biomed Eng. 2008 Oct;36(10):1714-34. doi: 10.1007/s10439-008-9552-6. Epub 2008 Aug 20.
9
Spatiotemporal Intermittency in Pulsatile Pipe Flow.
Entropy (Basel). 2020 Dec 30;23(1):46. doi: 10.3390/e23010046.

引用本文的文献

1
Gas transport mechanisms during high-frequency ventilation.
Respir Res. 2024 Dec 28;25(1):446. doi: 10.1186/s12931-024-03049-w.
2
Gas Exchange Mechanism of High Frequency Ventilation: A Brief Narrative Review and Prospect.
J Shanghai Jiaotong Univ Sci. 2022 May 16:1-5. doi: 10.1007/s12204-022-2424-7.

本文引用的文献

1
Parenchymal strain heterogeneity during oscillatory ventilation: why two frequencies are better than one.
J Appl Physiol (1985). 2018 Mar 1;124(3):653-663. doi: 10.1152/japplphysiol.00615.2017. Epub 2017 Oct 19.
2
High-Frequency Oscillatory Ventilation in Adults With ARDS: Past, Present, and Future.
Chest. 2017 Dec;152(6):1306-1317. doi: 10.1016/j.chest.2017.06.025. Epub 2017 Jul 3.
3
The onset of turbulence in pipe flow.
Science. 2011 Jul 8;333(6039):192-6. doi: 10.1126/science.1203223.
4
Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.
Ann Biomed Eng. 2010 Dec;38(12):3550-71. doi: 10.1007/s10439-010-0110-7. Epub 2010 Jul 8.
6
Direct numerical simulation of transitional flow in a stenosed carotid bifurcation.
J Biomech. 2008 Aug 7;41(11):2551-61. doi: 10.1016/j.jbiomech.2008.03.038. Epub 2008 Jul 24.
8
ICU cornerstone: high frequency ventilation is here to stay.
Crit Care. 2003 Oct;7(5):342-4. doi: 10.1186/cc2327. Epub 2003 Jul 2.
10
Experimental investigation of oscillatory flow through a symmetrically bifurcating tube.
J Biomech Eng. 1998 Oct;120(5):584-93. doi: 10.1115/1.2834748.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验