Suppr超能文献

使用多体素模式分析表征重度吸烟者的结构模式。

Characterizing the Structural Pattern of Heavy Smokers Using Multivoxel Pattern Analysis.

作者信息

Ye Yufeng, Zhang Jian, Huang Bingsheng, Cai Xun, Wang Panying, Zeng Ping, Wu Songxiong, Ma Jinting, Huang Han, Liu Heng, Dan Guo, Wu Guangyao

机构信息

Department of Radiology, Panyu Central Hospital, Guangzhou, China.

Medical Imaging Institute of Panyu, Guangzhou, China.

出版信息

Front Psychiatry. 2021 Feb 4;11:607003. doi: 10.3389/fpsyt.2020.607003. eCollection 2020.

Abstract

Smoking addiction is a major public health issue which causes a series of chronic diseases and mortalities worldwide. We aimed to explore the most discriminative gray matter regions between heavy smokers and healthy controls with a data-driven multivoxel pattern analysis technique, and to explore the methodological differences between multivoxel pattern analysis and voxel-based morphometry. Traditional voxel-based morphometry has continuously contributed to finding smoking addiction-related regions on structural magnetic resonance imaging. However, voxel-based morphometry has its inherent limitations. In this study, a multivoxel pattern analysis using a searchlight algorithm and support vector machine was applied on structural magnetic resonance imaging to identify the spatial pattern of gray matter volume in heavy smokers. Our proposed method yielded a voxel-wise accuracy of at least 81% for classifying heavy smokers from healthy controls. The identified regions were primarily located at the temporal cortex and prefrontal cortex, occipital cortex, thalamus (bilateral), insula (left), anterior and median cingulate gyri, and precuneus (left). Our results suggested that several regions, which were seldomly reported in voxel-based morphometry analysis, might be latently correlated with smoking addiction. Such findings might provide insights for understanding the mechanism of chronic smoking and the creation of effective cessation treatment. Multivoxel pattern analysis can be efficient in locating brain discriminative regions which were neglected by voxel-based morphometry.

摘要

吸烟成瘾是一个重大的公共卫生问题,在全球范围内导致一系列慢性疾病和死亡。我们旨在使用数据驱动的多体素模式分析技术,探索重度吸烟者与健康对照之间最具区分性的灰质区域,并探讨多体素模式分析与基于体素的形态测量学之间的方法差异。传统的基于体素的形态测量学一直在结构磁共振成像上为寻找与吸烟成瘾相关的区域做出贡献。然而,基于体素的形态测量学有其固有的局限性。在本研究中,一种使用探照灯算法和支持向量机的多体素模式分析被应用于结构磁共振成像,以识别重度吸烟者灰质体积的空间模式。我们提出的方法在将重度吸烟者与健康对照进行分类时,体素级准确率至少达到81%。识别出的区域主要位于颞叶皮质、前额叶皮质、枕叶皮质、丘脑(双侧)、岛叶(左侧)、前扣带回和中央扣带回以及楔前叶(左侧)。我们的结果表明,在基于体素的形态测量学分析中很少报道的几个区域,可能与吸烟成瘾潜在相关。这些发现可能为理解慢性吸烟的机制和创建有效的戒烟治疗提供见解。多体素模式分析在定位基于体素的形态测量学所忽略的大脑区分区域方面可能是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d88/7890259/21ecbf0286ea/fpsyt-11-607003-g0001.jpg

相似文献

1
Characterizing the Structural Pattern of Heavy Smokers Using Multivoxel Pattern Analysis.
Front Psychiatry. 2021 Feb 4;11:607003. doi: 10.3389/fpsyt.2020.607003. eCollection 2020.
2
Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.
Clin Respir J. 2017 Sep;11(5):621-631. doi: 10.1111/crj.12393. Epub 2015 Oct 13.
3
Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images.
Hum Brain Mapp. 2015 Dec;36(12):4869-79. doi: 10.1002/hbm.22956. Epub 2015 Oct 24.
5
Differences between smokers and non-smokers in regional gray matter volumes: a voxel-based morphometry study.
Addict Biol. 2012 Nov;17(6):977-80. doi: 10.1111/j.1369-1600.2010.00250.x. Epub 2010 Aug 23.
6
7
Gray matter volume differences and the effects of smoking on gray matter in schizophrenia.
Schizophr Res. 2007 Dec;97(1-3):242-9. doi: 10.1016/j.schres.2007.08.019. Epub 2007 Sep 24.
9
Brain Gray Matter Volume and Functional Connectivity Are Associated With Smoking Cessation Outcomes.
Front Hum Neurosci. 2019 Oct 15;13:361. doi: 10.3389/fnhum.2019.00361. eCollection 2019.
10
Cigarette smoking is associated with amplified age-related volume loss in subcortical brain regions.
Drug Alcohol Depend. 2017 Aug 1;177:228-236. doi: 10.1016/j.drugalcdep.2017.04.012. Epub 2017 Jun 7.

引用本文的文献

2
The structural and functional brain alternations in tobacco use disorder: a systematic review and meta-analysis.
Front Psychiatry. 2025 Apr 11;16:1403604. doi: 10.3389/fpsyt.2025.1403604. eCollection 2025.
3
Trait anxiety and corresponding neuromarkers predict internet addiction: A longitudinal study.
J Behav Addict. 2024 Mar 7;13(1):177-190. doi: 10.1556/2006.2023.00086. Print 2024 Mar 26.
4
Effects of current smoking severity on brain gray matter volume in opioid use disorder - a voxel-based morphometry study.
Am J Drug Alcohol Abuse. 2023 Mar 4;49(2):180-189. doi: 10.1080/00952990.2023.2169616. Epub 2023 Feb 14.

本文引用的文献

1
Multivoxel pattern analysis of structural MRI in children and adolescents with conduct disorder.
Brain Imaging Behav. 2019 Oct;13(5):1273-1280. doi: 10.1007/s11682-018-9953-6.
2
4
Trends in smoking prevalence and attributable mortality in China, 1991-2011.
Prev Med. 2016 Dec;93:82-87. doi: 10.1016/j.ypmed.2016.09.027. Epub 2016 Sep 24.
5
Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images.
Hum Brain Mapp. 2015 Dec;36(12):4869-79. doi: 10.1002/hbm.22956. Epub 2015 Oct 24.
6
Global trends of lung cancer mortality and smoking prevalence.
Transl Lung Cancer Res. 2015 Aug;4(4):327-38. doi: 10.3978/j.issn.2218-6751.2015.08.04.
7
Resting-state functional connectivity and nicotine addiction: prospects for biomarker development.
Ann N Y Acad Sci. 2015 Sep;1349(1):64-82. doi: 10.1111/nyas.12882.
8
Smoking cessation in an urban population in China.
Am J Health Behav. 2014 Nov;38(6):933-41. doi: 10.5993/AJHB.38.6.15.
9
The effects of chronic cigarette smoking on gray matter volume: influence of sex.
PLoS One. 2014 Aug 4;9(8):e104102. doi: 10.1371/journal.pone.0104102. eCollection 2014.
10
Current smoking and reduced gray matter volume-a voxel-based morphometry study.
Neuropsychopharmacology. 2014 Oct;39(11):2594-600. doi: 10.1038/npp.2014.112. Epub 2014 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验