与洞穴适应性鱼类机械感觉扩展相关的不对称遗传信号
An Asymmetric Genetic Signal Associated with Mechanosensory Expansion in Cave-Adapted Fish.
作者信息
Powers Amanda K, Boggs Tyler E, Gross Joshua B
机构信息
Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02138, USA.
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45227, USA.
出版信息
Symmetry (Basel). 2020 Dec;12(12). doi: 10.3390/sym12121951. Epub 2020 Nov 26.
A key challenge in contemporary biology is connecting genotypic variation to phenotypic diversity. Quantitative genetics provides a powerful technique for identifying regions of the genome that covary with phenotypic variation. Here, we present a quantitative trait loci (QTL) analysis of a natural freshwater fish system, , that harbors two morphs corresponding to a cave and surface fish. Following their divergence ~500 Kya, cavefish have adapted to the extreme pressures of the subterranean biome. As a consequence, cavefish have lost numerous features, but evolved gains for a variety of constructive features including behavior. Prior work found that sensory tissues (neuromasts) present in the "eye orbit" region of the skull associate with sensitivity to vibrations in water. This augmented sensation is believed to facilitate foraging behavior in the complete darkness of a cave, and may impact on evolved lateral swimming preference. To this point, however, it has remained unclear how morphological variation integrates with behavioral variation through heritable factors. Using a QTL approach, we discovered the genetic architecture of neuromasts present in the eye orbit region, demonstrating that this feature is under genetic control. Interestingly, linked loci were asymmetric-signals were detected using only data collected from the right, but not left, side of the face. This finding may explain enhanced sensitivity and/or feedback of water movements mediating a lateral swimming preference. The locus we discovered based on neuromast position maps near established QTL for eye size and a facial bone morphology, raising the intriguing possibility that eye loss, sensory expansion, and the cranial skeleton may be integrated for evolving adaptive behaviors. Thus, this work will further our understanding of the functional consequence of key loci that influence the evolutionary origin of changes impacting morphology, behavior, and adaptation.
当代生物学面临的一个关键挑战是将基因型变异与表型多样性联系起来。数量遗传学提供了一种强大的技术,用于识别与表型变异共变的基因组区域。在这里,我们对一个天然淡水鱼系统进行了数量性状基因座(QTL)分析,该系统包含两种形态,分别对应洞穴鱼和表层鱼。在大约50万年前分化之后,洞穴鱼已经适应了地下生物群落的极端压力。因此,洞穴鱼失去了许多特征,但进化出了包括行为在内的各种构造特征。先前的研究发现,存在于头骨“眼眶”区域的感觉组织(神经丘)与对水中振动的敏感性有关。这种增强的感觉被认为有助于在洞穴的完全黑暗中觅食行为,并可能影响进化出的侧向游泳偏好。然而,到目前为止,尚不清楚形态变异如何通过遗传因素与行为变异整合。使用QTL方法,我们发现了眼眶区域神经丘的遗传结构,证明了这一特征受遗传控制。有趣的是,连锁基因座是不对称的——仅使用从面部右侧而非左侧收集的数据检测到信号。这一发现可能解释了介导侧向游泳偏好的水运动的增强敏感性和/或反馈。我们基于神经丘位置发现的基因座位于已确定的眼睛大小和面部骨骼形态的QTL附近,这引发了一个有趣的可能性,即眼睛退化、感觉扩展和颅骨骨骼可能整合在一起以进化出适应性行为。因此,这项工作将加深我们对影响形态、行为和适应进化起源变化的关键基因座功能后果的理解。
相似文献
Symmetry (Basel). 2020-12
J Exp Zool B Mol Dev Evol. 2020-11
Commun Integr Biol. 2013-7-1
引用本文的文献
本文引用的文献
J Exp Zool B Mol Dev Evol. 2020-11
Anat Rec (Hoboken). 2020-1
Biochem Biophys Res Commun. 2017-8-26