Bouwman Jordy, Hrodmarsson Helgi R, Ellison G Barney, Bodi Andras, Hemberger Patrick
Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands.
Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States.
J Phys Chem A. 2021 Mar 4;125(8):1738-1746. doi: 10.1021/acs.jpca.1c00149. Epub 2021 Feb 22.
Phthalide pyrolysis has been assumed to be a clean fulvenallene source. We show that this is only true at low temperatures, and the CH isomers 1-, 2-, and 5-ethynylcyclopentadiene are also formed at high pyrolysis temperatures. Photoion mass-selected threshold photoelectron spectra are analyzed with the help of (time-dependent) density functional theory, (TD-)DFT, and equation-of-motion ionization potential coupled cluster, EOM-IP-CCSD, calculations, as well as Franck-Condon simulations of partly overlapping bands, to determine ionization energies. The fulvenallene ionization energy is confirmed at 8.23 ± 0.01 eV, and the ionization energies of 1-, 2 and 5-ethynylcyclopentadiene are newly determined at 8.27 ± 0.01, 8.49 ± 0.01 and 8.76 ± 0.02 eV, respectively. Excited state features in the photoelectron spectrum, in particular the A' band of 1-ethynylcyclopentadiene, are shown to be practical to isomer-selectively detect species when the ground-state band is congested. At high pyrolysis temperatures, the CH isomers may lose a hydrogen atom and yield the fulvenallenyl radical. Its ionization energy is confirmed at 8.20 ± 0.01 eV. The vibrational fingerprint of the first triplet fulvenallenyl cation state is also revealed and yields an ionization energy of 8.33 ± 0.02 eV. Further triplet cation states are identified and modeled in the 10-11 eV range. A reaction mechanism is proposed based on potential energy surface calculations. Based on a simplified reactor model, we show that the CH isomer distribution is far from thermal equilibrium in the reactor, presumably because irreversible H loss competes efficiently with isomerization.
邻苯二甲酸酐热解被认为是一种纯净的富烯丙二烯来源。我们发现只有在低温下才是如此,并且在高温热解时也会形成CH异构体1-、2-和5-乙炔基环戊二烯。借助(含时)密度泛函理论(TD-DFT)、运动方程电离势耦合簇(EOM-IP-CCSD)计算以及部分重叠谱带的弗兰克-康登模拟来分析光离子质量选择阈值光电子能谱,以确定电离能。富烯丙二烯的电离能确定为8.23±0.01电子伏特,1-、2-和5-乙炔基环戊二烯的电离能分别新确定为8.27±0.01、8.49±0.01和8.76±0.02电子伏特。当基态谱带拥挤时,光电子能谱中的激发态特征,特别是1-乙炔基环戊二烯的A'谱带,被证明可用于异构体选择性检测物种。在高温热解时,CH异构体可能失去一个氢原子并生成富烯丙二烯基自由基。其电离能确定为8.20±0.01电子伏特。还揭示了第一重态富烯丙二烯基阳离子态的振动指纹,其电离能为8.33±0.02电子伏特。在10 - 11电子伏特范围内识别并模拟了更多的三重态阳离子态。基于势能面计算提出了一种反应机理。基于一个简化的反应器模型。我们表明反应器中CH异构体分布远非热平衡状态,大概是因为不可逆的氢损失与异构化有效竞争。