Bloemberg Darin, Sosa-Miranda Carmen Daniela, Nguyen Tina, Weeratna Risini D, McComb Scott
Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada.
University of Ottawa Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
CRISPR J. 2021 Feb;4(1):104-119. doi: 10.1089/crispr.2020.0090.
Since observations that CRISPR nucleases function in mammalian cells, many strategies have been devised to adapt them for genetic engineering. Here, we investigated self-cutting and integrating CRISPR-Cas9 plasmids (SCIPs) as easy-to-use gene editing tools that insert themselves at CRISPR-guided locations. SCIPs demonstrated similar expression kinetics and gene disruption efficiency in mouse (EL4) and human (Jurkat) cells, with stable integration in 3-6% of transfected cells. Clonal sequencing analysis indicated that integrants showed bi- or mono-allelic integration of entire CRISPR plasmids in predictable orientations and with limited insertion or deletion formation. Interestingly, including longer homology arms (HAs; 500 bp) in varying orientations only modestly increased knock-in efficiency (by around twofold). Using a SCIP-payload design (SCIPpay) that liberates a promoter-less sequence flanked by HAs thereby requiring perfect homology-directed repair for transgene expression, longer HAs resulted in higher integration efficiency and precision of the payload but did not affect integration of the remaining plasmid sequence. As proofs of concept, we used SCIPpay to insert (1) a gene fragment encoding tdTomato into the locus of Jurkat cells, thereby creating a cell line that reports T-cell activation, and (2) a chimeric antigen receptor gene into the locus. Here, we demonstrate that SCIPs function as simple, efficient, and programmable tools useful for generating gene knock-out/knock-in cell lines, and we suggest future utility in knock-in site screening/optimization, unbiased off-target site identification, and multiplexed, iterative, and/or library-scale automated genome engineering.
自从观察到CRISPR核酸酶在哺乳动物细胞中发挥作用以来,人们已经设计了许多策略来使其适用于基因工程。在这里,我们研究了自我切割和整合的CRISPR-Cas9质粒(SCIPs),将其作为易于使用的基因编辑工具,可在CRISPR引导的位置自行插入。SCIPs在小鼠(EL4)和人类(Jurkat)细胞中表现出相似的表达动力学和基因破坏效率,在3-6%的转染细胞中稳定整合。克隆测序分析表明,整合体显示整个CRISPR质粒以可预测的方向进行双等位基因或单等位基因整合,且插入或缺失形成有限。有趣的是,包含不同方向的较长同源臂(HAs;500bp)仅适度提高了敲入效率(约两倍)。使用一种SCIP-载荷设计(SCIPpay),该设计可释放由HAs侧翼的无启动子序列,因此转基因表达需要完美的同源定向修复,较长的HAs导致载荷的整合效率和精度更高,但不影响其余质粒序列的整合。作为概念验证,我们使用SCIPpay将(1)编码tdTomato的基因片段插入Jurkat细胞的 位点,从而创建一个报告T细胞活化的细胞系,以及(2)一个嵌合抗原受体基因插入 位点。在这里,我们证明SCIPs可作为简单、高效且可编程的工具,用于生成基因敲除/敲入细胞系,并且我们建议其在敲入位点筛选/优化、无偏脱靶位点鉴定以及多重、迭代和/或文库规模的自动化基因组工程中的未来应用。