IEEE Trans Biomed Eng. 2021 Oct;68(10):3019-3028. doi: 10.1109/TBME.2021.3060867. Epub 2021 Sep 20.
Most of the bodily functions are regulated by multiple interactions between the parasympathetic (PNS) and sympathetic (SNS) nervous system. In this study, we propose a novel framework to quantify the causal flow of information between PNS and SNS through the analysis of heart rate variability (HRV) and electrodermal activity (EDA) signals.
Our method is based on a time-varying (TV) multivariate autoregressive model of EDA and HRV time-series and incorporates physiologically inspired assumptions by estimating the Directed Coherence in a specific frequency range. The statistical significance of the observed interactions is assessed by a bootstrap procedure purposely developed to infer causalities in the presence of both TV model coefficients and TV model residuals (i.e., heteroskedasticity). We tested our method on two different experiments designed to trigger a sympathetic response, i.e., a hand-grip task (HG) and a mental-computation task (MC).
Our results show a parasympathetic driven interaction in the resting state, which is consistent across different studies. The onset of the stressful stimulation triggers a cascade of events characterized by the presence or absence of the PNS-SNS interaction and changes in the directionality. Despite similarities between the results related to the two tasks, we reveal differences in the dynamics of the PNS-SNS interaction, which might reflect different regulatory mechanisms associated with different stressors.
We estimate causal coupling between PNS and SNS through MVAR modeling of EDA and HRV time-series.
Our results suggest promising future applicability to investigate more complex contexts such as affective and pathological scenarios.
大多数身体机能是通过副交感神经系统(PNS)和交感神经系统(SNS)之间的多重相互作用来调节的。在这项研究中,我们提出了一种新的框架,通过分析心率变异性(HRV)和皮肤电活动(EDA)信号来量化 PNS 和 SNS 之间信息的因果流向。
我们的方法基于 EDA 和 HRV 时间序列的时变(TV)多变量自回归模型,并通过在特定频率范围内估计有向相干性来纳入生理启发的假设。通过专门开发的用于在 TV 模型系数和 TV 模型残差(即异方差)存在的情况下推断因果关系的自举程序评估观察到的相互作用的统计显著性。我们在两个不同的实验中测试了我们的方法,这些实验旨在触发交感神经反应,即手握任务(HG)和心理计算任务(MC)。
我们的结果显示,在静息状态下存在自主神经驱动的相互作用,这在不同的研究中是一致的。应激刺激的开始会引发一系列事件,其特征是存在或不存在 PNS-SNS 相互作用以及方向的变化。尽管与两个任务相关的结果存在相似之处,但我们揭示了 PNS-SNS 相互作用的动态差异,这可能反映了与不同应激源相关的不同调节机制。
我们通过 EDA 和 HRV 时间序列的 MVAR 建模来估计 PNS 和 SNS 之间的因果耦合。
我们的结果表明,未来有望在更复杂的情况下(如情感和病理情况)进行研究。