Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.
Biophys J. 2021 Apr 6;120(7):1198-1209. doi: 10.1016/j.bpj.2021.02.013. Epub 2021 Feb 20.
The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.
能够检测特定的核酸序列使得广泛的应用成为可能,如病原体的鉴定、临床诊断和基因分型。CRISPR-Cas 蛋白 Cas12a 和 Cas13a 是 RNA 指导的内切酶,分别结合并切割特定的 DNA 和 RNA 序列。在识别靶序列后,两种酶都激活无特异性的核酸切割,这已被用于核酸的序列特异性分子诊断。在这里,我们提出了一种无标记的检测方法,该方法使用基于液-液相分离 (LLPS) 引起的溶液浊度的读出。我们的方法依赖于这样一个事实,即带相反电荷的聚合物的 LLPS 需要聚合物的长度超过一个临界长度。这种长度依赖性由 Voorn-Overbeek 模型预测,我们详细描述并在多核苷酸和聚阳离子的混合物中进行了实验验证。我们表明,通过使用可编程的 CRISPR 核酸酶 Cas12a 和 Cas13a,可以利用 LLPS 产生的浊度来检测特定的核酸序列的存在。由于多核苷酸和聚阳离子的 LLPS 会使溶液变混浊,因此可以用肉眼观察到特定核酸序列的检测。我们还证明了存在最佳的多核苷酸浓度用于检测。最后,我们提供了一个理论预测,提示可能对基于 LLPS 的检测分析进行改进。LLPS 的应用补充了基于 CRISPR 的分子诊断应用,并促进了简单和低成本的核苷酸序列检测。