Suppr超能文献

基于 CRISPR 的液-液相分离的 DNA 和 RNA 检测。

CRISPR-based DNA and RNA detection with liquid-liquid phase separation.

机构信息

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.

出版信息

Biophys J. 2021 Apr 6;120(7):1198-1209. doi: 10.1016/j.bpj.2021.02.013. Epub 2021 Feb 20.

Abstract

The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.

摘要

能够检测特定的核酸序列使得广泛的应用成为可能,如病原体的鉴定、临床诊断和基因分型。CRISPR-Cas 蛋白 Cas12a 和 Cas13a 是 RNA 指导的内切酶,分别结合并切割特定的 DNA 和 RNA 序列。在识别靶序列后,两种酶都激活无特异性的核酸切割,这已被用于核酸的序列特异性分子诊断。在这里,我们提出了一种无标记的检测方法,该方法使用基于液-液相分离 (LLPS) 引起的溶液浊度的读出。我们的方法依赖于这样一个事实,即带相反电荷的聚合物的 LLPS 需要聚合物的长度超过一个临界长度。这种长度依赖性由 Voorn-Overbeek 模型预测,我们详细描述并在多核苷酸和聚阳离子的混合物中进行了实验验证。我们表明,通过使用可编程的 CRISPR 核酸酶 Cas12a 和 Cas13a,可以利用 LLPS 产生的浊度来检测特定的核酸序列的存在。由于多核苷酸和聚阳离子的 LLPS 会使溶液变混浊,因此可以用肉眼观察到特定核酸序列的检测。我们还证明了存在最佳的多核苷酸浓度用于检测。最后,我们提供了一个理论预测,提示可能对基于 LLPS 的检测分析进行改进。LLPS 的应用补充了基于 CRISPR 的分子诊断应用,并促进了简单和低成本的核苷酸序列检测。

相似文献

1
CRISPR-based DNA and RNA detection with liquid-liquid phase separation.
Biophys J. 2021 Apr 6;120(7):1198-1209. doi: 10.1016/j.bpj.2021.02.013. Epub 2021 Feb 20.
2
Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection.
Int J Mol Sci. 2022 May 27;23(11):6052. doi: 10.3390/ijms23116052.
3
[CRISPR-Cas: the bacterial immunity that supports diagnostic in virology].
Virologie (Montrouge). 2022 Jul 1;26(4):303-313. doi: 10.1684/vir.2022.0966.
4
Novel nucleic acid detection strategies based on CRISPR-Cas systems: From construction to application.
Biotechnol Bioeng. 2020 Jul;117(7):2279-2294. doi: 10.1002/bit.27334. Epub 2020 Apr 6.
5
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.
6
Specific High-Sensitivity Enzymatic Molecular Detection System Termed RPA-Based CRISPR-Cas13a for Duck Tembusu Virus Diagnostics.
Bioconjug Chem. 2022 Jun 15;33(6):1232-1240. doi: 10.1021/acs.bioconjchem.2c00200. Epub 2022 May 19.
7
A Cascade Signal Amplification Based on Dynamic DNA Nanodevices and CRISPR/Cas12a Trans-cleavage for Highly Sensitive MicroRNA Sensing.
ACS Synth Biol. 2021 Jun 18;10(6):1481-1489. doi: 10.1021/acssynbio.1c00064. Epub 2021 May 19.
8
Detecting pathogens with Zinc-Finger, TALE and CRISPR- based programmable nucleic acid binding proteins.
J Microbiol Methods. 2018 Sep;152:98-104. doi: 10.1016/j.mimet.2018.07.024. Epub 2018 Aug 2.
9
Foldback-crRNA-Enhanced CRISPR/Cas13a System (FCECas13a) Enables Direct Detection of Ultrashort sncRNA.
Anal Chem. 2023 Oct 24;95(42):15606-15613. doi: 10.1021/acs.analchem.3c02687. Epub 2023 Oct 12.
10
Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN).
ACS Sens. 2020 May 22;5(5):1273-1280. doi: 10.1021/acssensors.0c00497. Epub 2020 May 8.

引用本文的文献

1
Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data.
PLoS Comput Biol. 2024 May 20;20(5):e1012139. doi: 10.1371/journal.pcbi.1012139. eCollection 2024 May.
3
Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox.
Biochemistry. 2023 Dec 19;62(24):3465-3487. doi: 10.1021/acs.biochem.3c00159. Epub 2023 May 16.
4
Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets.
MedComm (2020). 2023 Feb 28;4(2):e223. doi: 10.1002/mco2.223. eCollection 2023 Apr.
5
Biophysics of biomolecular condensates.
Biophys J. 2023 Mar 7;122(5):737-740. doi: 10.1016/j.bpj.2023.02.002. Epub 2023 Feb 14.
6
Bioinspired CRISPR-Mediated Cascade Reaction Biosensor for Molecular Detection of HIV Using a Glucose Meter.
ACS Nano. 2023 Feb 28;17(4):3966-3975. doi: 10.1021/acsnano.2c12754. Epub 2023 Feb 10.
7
Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases.
Diagnostics (Basel). 2022 Oct 11;12(10):2455. doi: 10.3390/diagnostics12102455.
8
Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection.
Int J Mol Sci. 2022 May 27;23(11):6052. doi: 10.3390/ijms23116052.
9
CRISPR Approaches for the Diagnosis of Human Diseases.
Int J Mol Sci. 2022 Feb 3;23(3):1757. doi: 10.3390/ijms23031757.
10
Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections.
J Nanobiotechnology. 2021 Dec 4;19(1):401. doi: 10.1186/s12951-021-01132-8.

本文引用的文献

1
Interfacial Tension of Polyelectrolyte Complex Coacervate Phases.
ACS Macro Lett. 2014 Jun 17;3(6):565-568. doi: 10.1021/mz500190w. Epub 2014 May 30.
2
Bright fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles.
Biol Methods Protoc. 2020 Oct 8;6(1):bpaa020. doi: 10.1093/biomethods/bpaa020. eCollection 2021.
4
Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities.
Biosens Bioelectron. 2020 Oct 15;166:112445. doi: 10.1016/j.bios.2020.112445. Epub 2020 Jul 26.
5
Enzymatic degradation of liquid droplets of DNA is modulated near the phase boundary.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16160-16166. doi: 10.1073/pnas.2001654117. Epub 2020 Jun 29.
6
Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
Annu Rev Phys Chem. 2020 Apr 20;71:53-75. doi: 10.1146/annurev-physchem-071819-113553.
7
CRISPR-Cas12-based detection of SARS-CoV-2.
Nat Biotechnol. 2020 Jul;38(7):870-874. doi: 10.1038/s41587-020-0513-4. Epub 2020 Apr 16.
8
Nonspherical Coacervate Shapes in an Enzyme-Driven Active System.
Langmuir. 2020 Mar 3;36(8):1956-1964. doi: 10.1021/acs.langmuir.9b02719. Epub 2020 Feb 17.
9
SHERLOCK: nucleic acid detection with CRISPR nucleases.
Nat Protoc. 2019 Oct;14(10):2986-3012. doi: 10.1038/s41596-019-0210-2. Epub 2019 Sep 23.
10
HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation.
ACS Synth Biol. 2019 Oct 18;8(10):2228-2237. doi: 10.1021/acssynbio.9b00209. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验