文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多种细胞类型通过 PDGFRβ 和生物能量机制促进动脉粥样硬化病变纤维帽的形成。

Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms.

机构信息

Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.

Cardiovascular Research Center, New York University Langone Medical Center, NY, New York, USA.

出版信息

Nat Metab. 2021 Feb;3(2):166-181. doi: 10.1038/s42255-020-00338-8. Epub 2021 Feb 22.


DOI:10.1038/s42255-020-00338-8
PMID:33619382
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7905710/
Abstract

Stable atherosclerotic plaques are characterized by a thick, extracellular matrix-rich fibrous cap populated by protective ACTA2 myofibroblast (MF)-like cells, assumed to be almost exclusively derived from smooth muscle cells (SMCs). Herein, we show that in murine and human lesions, 20% to 40% of ACTA2 fibrous cap cells, respectively, are derived from non-SMC sources, including endothelial cells (ECs) or macrophages that have undergone an endothelial-to-mesenchymal transition (EndoMT) or a macrophage-to-mesenchymal transition (MMT). In addition, we show that SMC-specific knockout of the Pdgfrb gene, which encodes platelet-derived growth factor receptor beta (PDGFRβ), in Apoe mice fed a Western diet for 18 weeks resulted in brachiocephalic artery lesions nearly devoid of SMCs but with no changes in lesion size, remodelling or indices of stability, including the percentage of ACTA2 fibrous cap cells. However, prolonged Western diet feeding of SMC Pdgfrb-knockout mice resulted in reduced indices of stability, indicating that EndoMT- and MMT-derived MFs cannot compensate indefinitely for loss of SMC-derived MFs. Using single-cell and bulk RNA-sequencing analyses of the brachiocephalic artery region and in vitro models, we provide evidence that SMC-to-MF transitions are induced by PDGF and transforming growth factor-β and dependent on aerobic glycolysis, while EndoMT is induced by interleukin-1β and transforming growth factor-β. Together, we provide evidence that the ACTA2 fibrous cap originates from a tapestry of cell types, which transition to an MF-like state through distinct signalling pathways that are either dependent on or associated with extensive metabolic reprogramming.

摘要

稳定的动脉粥样硬化斑块的特征是有一个厚的、富含细胞外基质的纤维帽,其中有保护性的 ACTA2 肌成纤维细胞(MF)样细胞,这些细胞被认为几乎完全来源于平滑肌细胞(SMCs)。在此,我们发现,在小鼠和人类病变中,分别有 20%至 40%的 ACTA2 纤维帽细胞来源于非 SMC 来源,包括内皮细胞(ECs)或经历内皮-间充质转化(EndoMT)或巨噬细胞-间充质转化(MMT)的巨噬细胞。此外,我们还发现,在给予西方饮食 18 周的 Apoe 小鼠中,SMC 特异性敲除血小板衍生生长因子受体β(PDGFRβ)的编码基因 Pdgfrb 导致肱动脉病变几乎没有 SMC,但病变大小、重塑或稳定性指数没有变化,包括 ACTA2 纤维帽细胞的百分比。然而,SMC Pdgfrb 敲除小鼠的长期西方饮食喂养导致稳定性指数降低,表明 EndoMT 和 MMT 衍生的 MF 不能无限期地替代 SMC 衍生的 MF。通过对肱动脉区域的单细胞和批量 RNA 测序分析以及体外模型,我们提供了证据表明,SMC 向 MF 的转变是由 PDGF 和转化生长因子-β诱导的,并依赖于有氧糖酵解,而 EndoMT 是由白细胞介素-1β和转化生长因子-β诱导的。综上所述,我们提供的证据表明,ACTA2 纤维帽起源于一个细胞类型的织锦,这些细胞通过不同的信号通路向 MF 样状态转变,这些信号通路要么依赖于或与广泛的代谢重编程相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/47104e51bb3e/nihms-1657184-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/3426a7bfbec7/nihms-1657184-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/a8f900384904/nihms-1657184-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/392144a4ed4f/nihms-1657184-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/cf767b86860b/nihms-1657184-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/6ae7b9a624b1/nihms-1657184-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/e24ed4fd82b4/nihms-1657184-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/bd34ce7c012d/nihms-1657184-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/a7125de4c0b5/nihms-1657184-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/22c29fa491de/nihms-1657184-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/c0e0f9fadc62/nihms-1657184-f0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/9ec254d1b495/nihms-1657184-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/9b5295d3da64/nihms-1657184-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/0c3daa3d2a2d/nihms-1657184-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/d4f3f665d19b/nihms-1657184-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/3fc4fcbf496e/nihms-1657184-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/23bbcb049108/nihms-1657184-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/47104e51bb3e/nihms-1657184-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/3426a7bfbec7/nihms-1657184-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/a8f900384904/nihms-1657184-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/392144a4ed4f/nihms-1657184-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/cf767b86860b/nihms-1657184-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/6ae7b9a624b1/nihms-1657184-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/e24ed4fd82b4/nihms-1657184-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/bd34ce7c012d/nihms-1657184-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/a7125de4c0b5/nihms-1657184-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/22c29fa491de/nihms-1657184-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/c0e0f9fadc62/nihms-1657184-f0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/9ec254d1b495/nihms-1657184-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/9b5295d3da64/nihms-1657184-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/0c3daa3d2a2d/nihms-1657184-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/d4f3f665d19b/nihms-1657184-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/3fc4fcbf496e/nihms-1657184-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/23bbcb049108/nihms-1657184-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5700/7905710/47104e51bb3e/nihms-1657184-f0007.jpg

相似文献

[1]
Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms.

Nat Metab. 2021-2

[2]
Melatonin Ameliorates Atherosclerotic Plaque Vulnerability by Regulating PPARδ-Associated Smooth Muscle Cell Phenotypic Switching.

J Pineal Res. 2024-8

[3]
KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis.

Nat Med. 2015-6

[4]
Smooth muscle cell-specific deletion of unexpectedly leads to impaired development of advanced atherosclerotic lesions.

Am J Physiol Heart Circ Physiol. 2017-5-1

[5]
PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns.

Am J Physiol Heart Circ Physiol. 2009-2

[6]
Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms.

Physiol Genomics. 2012-2-7

[7]
Endothelial Cell-Specific Deletion of P2Y2 Receptor Promotes Plaque Stability in Atherosclerosis-Susceptible ApoE-Null Mice.

Arterioscler Thromb Vasc Biol. 2017-1

[8]
A two-phase model of early fibrous cap formation in atherosclerosis.

J Theor Biol. 2018-8-8

[9]
Smooth muscle hyperplasia due to loss of smooth muscle α-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-β.

Hum Mol Genet. 2013-4-15

[10]
Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet.

Kardiol Pol. 2018-6-4

引用本文的文献

[1]
Microalgae empower skeletal muscle via increased force production and viability.

Sci Adv. 2025-7-18

[2]
Delineation of a thrombin receptor-stimulated vascular smooth muscle cell transition generating cells in the plaque-stabilising fibrous cap.

Cardiovasc Res. 2025-6-27

[3]
Comprehensive Multimodal Profiling of Atherosclerosis Reveals Bhlhe40 as a Potential Regulator of Vascular Smooth Muscle Cell Phenotypic Modulation.

bioRxiv. 2025-5-23

[4]
Proteomic profiling reveals a higher presence of glycolytic enzymes in human atherosclerotic lesions with unfavourable histological characteristics.

Cardiovasc Res. 2025-7-31

[5]
Recent progress in ROS-responsive biomaterials for the diagnosis and treatment of cardiovascular diseases.

Theranostics. 2025-4-11

[6]
Single-cell RNA sequencing reveals sex differences in the subcellular composition and associated gene-regulatory network activity of human carotid plaques.

Nat Cardiovasc Res. 2025-4

[7]
Endothelial cell-related genetic variants identify LDL cholesterol-sensitive individuals who derive greater benefit from aggressive lipid lowering.

Nat Med. 2025-3

[8]
The Crosstalk Between Endothelial Cells, Smooth Muscle Cells, and Macrophages in Atherosclerosis.

Int J Mol Sci. 2025-2-10

[9]
Association between Heavy metals and triglyceride-glucose-related index: a mediation analysis of inflammation indicators.

Lipids Health Dis. 2025-2-13

[10]
Inflammatory Pathways in Coronary Artery Disease: Which Ones to Target for Secondary Prevention?

Cells. 2025-1-21

本文引用的文献

[1]
Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells.

Nat Metab. 2019-11

[2]
Irradiation abolishes smooth muscle investment into vascular lesions in specific vascular beds.

JCI Insight. 2018-8-9

[3]
Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice.

Nat Med. 2018-7-23

[4]
The BCR-ABL1 Inhibitors Imatinib and Ponatinib Decrease Plasma Cholesterol and Atherosclerosis, and Nilotinib and Ponatinib Activate Coagulation in a Translational Mouse Model.

Front Cardiovasc Med. 2018-6-12

[5]
Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue.

Proc Natl Acad Sci U S A. 2018-6-11

[6]
Therapeutic potential of CPI-613 for targeting tumorous mitochondrial energy metabolism and inhibiting autophagy in clear cell sarcoma.

PLoS One. 2018-6-7

[7]
Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques.

Eur Heart J. 2018-6-21

[8]
Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry.

Circ Res. 2018-3-15

[9]
The CANTOS Trial: One Important Step for Clinical Cardiology but a Giant Leap for Vascular Biology.

Arterioscler Thromb Vasc Biol. 2017-9-28

[10]
Macrophage metabolism in atherosclerosis.

FEBS Lett. 2017-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索