Kong Qing-Rong, Li Dong, Liu Xiao-Lin, Zhao Hai-Xia, Ren Yan-Ping, Long La-Sheng, Zheng Lan-Sun
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
Inorg Chem. 2021 Mar 15;60(6):3565-3571. doi: 10.1021/acs.inorgchem.0c02549. Epub 2021 Feb 23.
The magnetodielectric effect is closely related to multiferroic or magnetoelectric coupling; thus, it can be used to predict magnetoelectric coupling, especially in compounds with special magnetic properties. The magnetodielectric response can often be used to predict many interesting and meaningful physical coupling mechanisms. Therefore, fabricating magnetodielectric materials is an effective step toward the development of magnetoelectric materials. Herein, we synthesize the mixed-valence layered ferrimagnetic molecular compound (CNH)FeFeF(HCOO) () and demonstrate that it exhibits both slow magnetic relaxation behavior and long-range magnetic order. This long-range order occurs because of the coexistence and competition between two typical magnetic interactions, namely, an Fe-F-Fe superexchange and a long-distance superexchange Fe-O-C-O-Fe-F-Fe path in the interlayer and interchain spin frustration. Notably, this compound also demonstrates two abnormal dielectric relaxation processes: the first process is dominated by dynamic guest cations, while the other process is related to the increasing magnetic correlation. Over a wide temperature range below 170 K, the magnetodielectric effect reveals that the magnetic correlation maybe promotes electron dynamics and leads to magnetodielectric coupling. These findings pave a novel path for designing magnetodielectric molecular materials.
磁电介质效应与多铁性或磁电耦合密切相关;因此,它可用于预测磁电耦合,特别是在具有特殊磁性的化合物中。磁电介质响应通常可用于预测许多有趣且有意义的物理耦合机制。因此,制备磁电介质材料是迈向磁电材料发展的有效一步。在此,我们合成了混合价层状亚铁磁性分子化合物(CNH)FeFeF(HCOO) (),并证明它既表现出慢磁弛豫行为又表现出长程磁有序。这种长程有序的出现是由于两种典型磁相互作用的共存和竞争,即层间和链间自旋阻挫中的Fe-F-Fe超交换以及长距离超交换Fe-O-C-O-Fe-F-Fe路径。值得注意的是,该化合物还表现出两种异常的介电弛豫过程:第一个过程由动态客体阳离子主导,而另一个过程与磁相关性的增加有关。在低于170 K的宽温度范围内,磁电介质效应表明磁相关性可能促进电子动力学并导致磁电介质耦合。这些发现为设计磁电介质分子材料开辟了一条新途径。