Freyre Christophe A C, Spiegel Stephan, Gubser Keller Caroline, Vandemeulebroecke Marc, Hoefling Holger, Dubost Valerie, Cörek Emre, Moulin Pierre, Hossain Imtiaz
33413Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland.
1528Novartis International AG, Basel, Switzerland.
Toxicol Pathol. 2021 Jun;49(4):798-814. doi: 10.1177/0192623320987202. Epub 2021 Feb 24.
Several deep learning approaches have been proposed to address the challenges in computational pathology by learning structural details in an unbiased way. Transfer learning allows starting from a learned representation of a pretrained model to be directly used or fine-tuned for a new domain. However, in histopathology, the problem domain is tissue-specific and putting together a labelled data set is challenging. On the other hand, whole slide-level annotations, such as biomarker levels, are much easier to obtain. We compare two pretrained models, one histology-specific and one from ImageNet on various computational pathology tasks. We show that a domain-specific model (HistoNet) contains richer information for biomarker classification, localization of biomarker-relevant morphology within a slide, and the prediction of expert-graded features. We use a weakly supervised approach to discriminate slides based on biomarker level and simultaneously predict which regions contribute to that prediction. We employ multitask learning to show that learned representations correlate with morphological features graded by expert pathologists. All of these results are demonstrated in the context of renal toxicity in a mechanistic study of compound toxicity in rat models. Our results emphasize the importance of histology-specific models and their knowledge representations for solving a wide range of computational pathology tasks.
已经提出了几种深度学习方法,通过以无偏的方式学习结构细节来应对计算病理学中的挑战。迁移学习允许从预训练模型的学习表示开始,直接用于新领域或对其进行微调。然而,在组织病理学中,问题领域是特定于组织的,并且组装一个标记数据集具有挑战性。另一方面,全玻片级别的注释,如生物标志物水平,更容易获得。我们在各种计算病理学任务上比较了两个预训练模型,一个是特定于组织学的,另一个来自ImageNet。我们表明,特定领域的模型(HistoNet)在生物标志物分类、玻片内生物标志物相关形态的定位以及专家分级特征的预测方面包含更丰富的信息。我们使用一种弱监督方法,根据生物标志物水平区分玻片,并同时预测哪些区域对该预测有贡献。我们采用多任务学习来表明学习到的表示与专家病理学家分级的形态特征相关。所有这些结果都在大鼠模型中化合物毒性的机制研究中的肾脏毒性背景下得到了证明。我们的结果强调了特定于组织学的模型及其知识表示对于解决广泛的计算病理学任务的重要性。