Huang Jiayu, Kendrick Brian K, Zhang Dong H
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Theoretical Division (T-1, MS B221), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
J Phys Chem Lett. 2021 Mar 4;12(8):2160-2165. doi: 10.1021/acs.jpclett.1c00133. Epub 2021 Feb 24.
Ultracold chemical reactions involve collision temperatures approaching absolute zero, and for molecular systems that exhibit a barrierless and exoergic reaction path significant reactivity can occur. In addition, many molecules contain a conical intersection, and the associated geometric phase has been shown to significantly alter the outcome of ultracold reactions. Here we report a quantum dynamics study for the ultracold O + OH → H + O reaction. An analysis of the scattering wave functions reveals explicitly the nature of the quantum interference between the direct and looping reaction pathways around the conical intersection and thus illustrates how the reaction proceeds under the control of the geometric phase for the first time. The wave function analysis should generalize to other ultracold reactions that contain a conical intersection. Our findings indicate that quantum control techniques such as an optical lattice trap or the initial state orientation may be effective in controlling the reactivity.
超冷化学反应涉及接近绝对零度的碰撞温度,对于呈现无障碍且放能反应路径的分子系统,可能会发生显著的反应活性。此外,许多分子包含一个锥形交叉点,并且相关的几何相位已被证明会显著改变超冷反应的结果。在此,我们报告了对超冷O + OH → H + O反应的量子动力学研究。对散射波函数的分析明确揭示了围绕锥形交叉点的直接反应路径和环状反应路径之间量子干涉的本质,从而首次阐明了反应在几何相位控制下的进行方式。波函数分析应可推广到其他包含锥形交叉点的超冷反应。我们的研究结果表明,诸如光学晶格阱或初始态取向等量子控制技术可能在控制反应活性方面有效。