School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
J Am Chem Soc. 2021 Mar 10;143(9):3613-3627. doi: 10.1021/jacs.1c00279. Epub 2021 Feb 25.
The photochemical dynamics of three classes of organic photoredox catalysts employed in organocatalyzed atom-transfer radical polymerization (O-ATRP) are studied using time-resolved optical transient absorption and fluorescence spectroscopy. The nine catalysts selected for study are examples of N-aryl and core-substituted dihydrophenazine, phenoxazine and phenothiazine compounds with varying propensities for control of polymerization outcomes. Excited singlet-state lifetimes extracted from the spectroscopic measurements are reported in ,-dimethylformamide (DMF), dichloromethane (DCM), and toluene. Ultrafast (<200 fs to 3 ps) electronic relaxation of the photocatalysts after photoexcitation at near-UV wavelengths (318-390 nm) populates the first singlet excited state (S). The S-state lifetimes range from 130 ps to 40 ns with a considerable dependence on the photocatalyst structure and the solvent. The competition between ground electronic state recovery and intersystem crossing controls triplet state populations and is a minor pathway in the dihydrophenazine derivatives but is of greater importance for phenoxazine and phenothiazine catalysts. A comparison of our results with previously reported O-ATRP performances of the various photoredox catalysts shows that high triplet-state quantum yields are not a prerequisite for controlling polymer dispersity. For example, the photocatalyst 5,10-bis(4-cyanophenyl)-5,10-dihydrophenazine, shown previously to exert good polymerization control, possesses the shortest S-state lifetime (135 ps in DMF and 180 ps in ,-dimethylacetamide) among the nine examples reported here and a negligible triplet-state quantum yield. The results call for a re-evaluation of the excited-state properties of most significance in governing the photocatalytic behavior of organic photoredox catalysts in O-ATRP reactions.
三类有机光氧化还原催化剂在有机催化原子转移自由基聚合(O-ATRP)中的光化学动力学研究采用时间分辨光瞬态吸收和荧光光谱法。选择了九种催化剂进行研究,它们是 N-芳基和核取代二氢吩嗪、吩嗪和吩噻嗪化合物的示例,这些化合物具有不同的控制聚合结果的倾向。从光谱测量中提取的激发单线态寿命报告在-二甲基甲酰胺(DMF)、二氯甲烷(DCM)和甲苯中。光催化剂在近紫外波长(318-390nm)光激发后,超快(<200fs 至 3ps)电子弛豫将其激发到第一单线态激发态(S)。S 态寿命范围从 130ps 到 40ns,与光催化剂结构和溶剂有很大的关系。基态电子恢复和系间窜越之间的竞争控制三重态的种群,这在二氢吩嗪衍生物中是一个次要途径,但在吩嗪和吩噻嗪催化剂中更为重要。将我们的结果与先前报道的各种光氧化还原催化剂在 O-ATRP 中的性能进行比较表明,高三重态量子产率不是控制聚合物分散度的先决条件。例如,先前显示出良好聚合控制的光催化剂 5,10-双(4-氰基苯基)-5,10-二氢吩嗪,在 DMF 中具有最短的 S 态寿命(135ps)和在-二甲基乙酰胺中具有 180ps)在报告的九个示例中,三重态量子产率可以忽略不计。结果要求重新评估在有机光氧化还原催化剂在 O-ATRP 反应中控制光催化行为方面最重要的激发态性质。