Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA.
Soft Matter. 2021 Mar 28;17(12):3322-3332. doi: 10.1039/d0sm01782e. Epub 2021 Feb 25.
We explore hydrodynamic interactions between microswimmers and corrugated, or rough, surfaces, as found often in biological systems and microfluidic devices. Using the Lorentz reciprocal theorem for viscous flows we derive exact expressions for the roughness-induced velocities up to first order in the surface-height fluctuations and provide solutions for the translational and angular velocities valid for arbitrary surface shapes. We apply our theoretical predictions to elucidate the impact of a periodic, wavy surface on the velocities of microswimmers modeled in terms of a superposition of Stokes singularities. Our findings, valid in the framework of a far-field analysis, show that the roughness-induced velocities vary non-monotonically with the wavelength of the surface. For wavelengths comparable to the swimmer-surface distance a pusher can experience a repulsive contribution due to the reflection of flow fields at the edge of a surface cavity, which decreases the overall attraction to the wall.
我们探索了微游泳者与波纹或粗糙表面之间的流体动力相互作用,这种表面在生物系统和微流控设备中很常见。我们使用粘性流的洛伦兹互易定理,推导出了粗糙度引起的速度的精确表达式,这些表达式在表面高度波动的一阶中是有效的,并提供了适用于任意表面形状的平移和角速度的解。我们应用我们的理论预测来阐明周期性波状表面对基于斯托克斯奇点叠加的微游泳者速度的影响。我们的发现,在远场分析的框架内是有效的,表明粗糙度引起的速度随表面波长的变化是非单调的。对于与游泳者-表面距离相当的波长,由于表面空腔边缘的流场反射,推动器可能会受到排斥作用,这会降低对壁面的整体吸引力。