Petrushenko Igor K, Bettinger Holger F
Irkutsk National Research Technical University, 83 Lermontov St., 664074 Irkutsk, Russia.
Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
Phys Chem Chem Phys. 2021 Mar 11;23(9):5315-5324. doi: 10.1039/d1cp00025j.
Hydrogen adsorption on different benzenes, both organic and inorganic, decorated with Li cations (Li+) was systematically studied by using quantum chemistry techniques. Our calculations demonstrate that Li+-decoration enhances the hydrogen storage ability of the complexes. MP2 calculations reveal that one to five hydrogen molecules per Li+ have high adsorption energies (Ead), up to -4.77 kcal mol-1, which is crucial for effective adsorption/desorption performance. The assessed hydrogen capacity of studied complexes is in the range of 10.0-10.6 wt%. SAPT2 calculations confirmed that induction and electrostatic interactions play the major role for H2 adsorption of the investigated systems, whereas London dispersion contributes to Ead moderately only in the cases of large number of hydrogen molecules adsorbed. Independent gradient model (IGM) analysis showed that there exists non-covalent bonding between Li+ and H2. The obtained van't Hoff desorption temperatures substantially exceed the temperature of liquid nitrogen. Ab initio molecular dynamics simulations confirmed the stability of the studied complexes. Our investigations establish the high potential of the studied complexes for usage in systems for hydrogen storage.
利用量子化学技术,系统研究了锂阳离子(Li⁺)修饰的不同有机和无机苯上的氢吸附情况。我们的计算表明,Li⁺修饰增强了配合物的储氢能力。MP2计算表明,每个Li⁺吸附一到五个氢分子具有较高的吸附能(Ead),高达-4.77 kcal mol⁻¹,这对于有效的吸附/解吸性能至关重要。所研究配合物的评估储氢容量在10.0-10.6 wt%范围内。SAPT2计算证实,诱导和静电相互作用对所研究体系的H₂吸附起主要作用,而伦敦色散仅在吸附大量氢分子的情况下对Ead有适度贡献。独立梯度模型(IGM)分析表明,Li⁺和H₂之间存在非共价键。所获得的范特霍夫解吸温度大大超过液氮温度。从头算分子动力学模拟证实了所研究配合物的稳定性。我们的研究确定了所研究配合物在储氢系统中的高应用潜力。