Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA.
National High Magnetic Field Laboratory, Tallahassee, Florida, USA.
Magn Reson Chem. 2021 Sep;59(9-10):1009-1023. doi: 10.1002/mrc.5145. Epub 2021 Mar 23.
Solid-state NMR (SSNMR) spectroscopy of integer-spin quadrupolar nuclei is important for the molecular-level characterization of a variety of materials and biological solids; of the integer spins, H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer-spin nuclei often feature very broad powder patterns that arise largely from the effects of the first-order quadrupolar interaction; as such, the acquisition of high-quality spectra continues to remain a challenge. The broadband adiabatic inversion cross-polarization (BRAIN-CP) pulse sequence, which is capable of cross-polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer-spin nuclei, including N (S = 1), especially when coupled with Carr-Purcell/Meiboom-Gill pulse sequences featuring frequency-swept WURST pulses (WURST-CPMG) for T -based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN-CP, nor any concrete theoretical models to aid in its parameterization for applications to integer-spin nuclei. In addition, the BRAIN-CP/WURST-CPMG scheme has not been demonstrated for generalized application to wideline or ultra-wideline (UW) H SSNMR. Herein, we provide a theoretical description of the BRAIN-CP pulse sequence for spin-1/2 → spin-1 CP under static conditions, featuring a set of analytical equations describing Hartmann-Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer-spin CP methods, demonstrating rapid acquisition of H NMR spectra from efficient broadband CP.
固体核磁共振(SSNMR)光谱学对于各种材料和生物固体的分子水平特性研究非常重要;在整数自旋中,H(S=1)是迄今为止研究最广泛的,因为它在探测动态运动方面非常有用。整数自旋核的 SSNMR 光谱通常具有非常宽的粉末图案,这些图案主要源于一阶四极相互作用的影响;因此,高质量光谱的获取仍然是一个挑战。宽带绝热反转交叉极化(BRAIN-CP)脉冲序列能够在大带宽内进行交叉极化(CP)增强,已成功用于获取整数自旋核的 SSNMR 光谱,包括 N(S=1),特别是与 Carr-Purcell/Meiboom-Gill 脉冲序列结合使用时,该序列具有频率扫描的 WURST 脉冲(WURST-CPMG),用于基于 T 的信号增强。然而,迄今为止,还没有对 BRAIN-CP 背后的自旋动力学进行系统研究,也没有任何具体的理论模型来帮助其参数化,以便应用于整数自旋核。此外,BRAIN-CP/WURST-CPMG 方案尚未被证明可广泛应用于宽线或超宽线(UW)H SSNMR。在此,我们提供了在静态条件下自旋 1/2→自旋 1 CP 的 BRAIN-CP 脉冲序列的理论描述,其中包括一组描述哈特曼-哈恩匹配条件的解析方程和数值模拟,阐明了涉及极化转移、相干交换和绝热反转的 CP 机制。提供了几个实验示例进行比较,以与理论模型和以前开发的整数自旋 CP 方法进行比较,展示了从高效宽带 CP 快速获取 H NMR 光谱的能力。