Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
Biochim Biophys Acta Proteins Proteom. 2021 Jun;1869(6):140634. doi: 10.1016/j.bbapap.2021.140634. Epub 2021 Feb 23.
One proposed toxic mechanism of Bacillus thuringiensis Cry δ-endotoxins involves pore formation in target membranes by the α4-α5 transmembrane hairpin constituting their pore-forming domain. Here, nine selected charged and uncharged polar residues in the pore-lining α4 of the Cry4Aa mosquito-active toxin were substituted with Ala. All mutant toxins, i.e., D169A, R171A, Q173A, H178A, Y179A, H180A, Q182A, N183A and E187A, were over-expressed in Escherichia coli as 130-kDa protoxin inclusions at levels comparable to the wild-type toxin. Bioassays against Aedes aegypti larvae revealed that only H178A and H180A mutants displayed a drastic reduction in biotoxicity, albeit almost complete insolubility observed for H178A, but not for H180A inclusions. Further mutagenic analysis showed that replacements of His with charged (Arg, Lys, Asp, Glu), small uncharged polar (Ser, Cys) or small non-polar (Gly, Val) residues severely impaired the biotoxicity, unlike substitutions with relatively large uncharged (Asn, Gln, Leu) or aromatic (Phe, Tyr, Trp) residues. Similar to the trypsin-activated wild-type toxin, both bio-active and -inactive H180 mutants were still capable of releasing entrapped calcein from lipid vesicles and producing cation-selective channels with ~130-pS maximum conductance. Analysis of the Cry4Aa structure revealed the existence of a hydrophobic cavity near the critical His side-chain. Analysis of simulated structures revealed that His-to-smaller residue conversions create a gap disrupting such cavity's hydrophobicity and hence structural arrangements of the α4-α5 hairpin. Altogether, our data disclose a critical involvement in Cry4Aa-biotoxicity of His exclusively present in the lumen-facing α4 for providing proper environment for the α4-α5 hairpin prior to membrane-inserted pore formation.
苏云金芽孢杆菌 Cry δ-内毒素的一种拟议的毒性机制涉及靶细胞膜中由构成其孔形成域的α4-α5 跨膜发夹形成的孔。在这里,用丙氨酸取代了 Cry4Aa 蚊子活性毒素孔衬里α4 中的九个选定的带电和不带电极性残基。所有突变毒素,即 D169A、R171A、Q173A、H178A、Y179A、H180A、Q182A、N183A 和 E187A,均在大肠杆菌中作为 130 kDa 原毒素包涵体高水平表达,与野生型毒素相当。对埃及伊蚊幼虫的生物测定表明,只有 H178A 和 H180A 突变体显示出生物毒性的急剧降低,尽管观察到 H178A 几乎完全不溶,但 H180A 包涵体则不然。进一步的突变分析表明,用带电荷(精氨酸、赖氨酸、天冬氨酸、谷氨酸)、小不带电极性(丝氨酸、半胱氨酸)或小非极性(甘氨酸、缬氨酸)残基取代组氨酸严重损害了生物毒性,而用相对较大的不带电(天冬酰胺、谷氨酰胺、亮氨酸)或芳香(苯丙氨酸、酪氨酸、色氨酸)残基取代则不然。与胰蛋白酶激活的野生型毒素类似,生物活性和非活性的 H180 突变体仍能够从脂质体中释放封闭的钙黄绿素,并产生具有~130-pS 最大电导的阳离子选择性通道。对 Cry4Aa 结构的分析表明,在关键组氨酸侧链附近存在一个疏水性空腔。模拟结构分析表明,组氨酸到较小残基的转换会产生一个间隙,破坏该空腔的疏水性以及因此α4-α5 发夹的结构排列。总之,我们的数据表明,仅存在于腔面的α4 中的 His 对于在插入膜孔形成之前为α4-α5 发夹提供适当的环境,对于 Cry4Aa 的生物毒性具有至关重要的作用。