School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
Sci Total Environ. 2021 May 1;767:144977. doi: 10.1016/j.scitotenv.2021.144977. Epub 2021 Jan 30.
Antibiotic fermentation residue (AR) is composed of hazardous organic waste produced by the pharmaceutical industry. AR can be effectively converted into bio-oil by fast pyrolysis, but its high nitrogen content limits the prospect of bio-oil as a fuel resource. In order to further reduce the nitrogen content of AR bio-oil, we have examined the catalytic removal of N and O from penicillin fermentation residue (PR) bio-oil under fast pyrolysis conditions. We have used M/HZSM-5 (M = Fe, Co, Ni, Cu, Zn, Zr, Mo, Ag and Ce) metal catalysts, with a metal oxide content of 10%. Additionally, the effect of mixed and separated catalytic forms on catalytic upgrading were analyzed, and changes in the catalyst itself before and after pyrolysis under separated catalytic conditions were specifically investigated. Our results show that the metal elements in the fresh catalyst will exist in the form of oxides, ions and simple metals. In-situ reduction caused by pyrolysis gas in the catalytic pyrolysis process makes some ionic metals (e.g., Co, Cu and Ag) in the catalyst transform into oxides, and some metal oxides are reduced to simple metals or suboxides (including Fe, Ni, Cu and Mo). The N content in the mixed catalytic bio-oil decreased from 10.09 wt% to Zn/HZSM-5 (6.98 wt%), Co/HZSM-5 (7.1 wt%), Cu/HZSM-5 (7.18 wt%) and Ce/HZSM-5 (7.18 wt%). We also observed significant reduction in the O content (9.77 wt%) with Ag/HZSM-5 (3.75 wt%), Mo/HZSM-5 (6.86 wt%), Ce/HZSM-5 (8.39 wt%) and Fe/HZSM-5 (8.54 wt%) in the separated catalytic bio-oil. The Ni/HZSM-5 catalystcan reduce the organic acid content in bio-oil from 22.9% to 10.8%. The separated catalysis methodology also promoted an increase of hydrocarbons in the bio-oil: Zn/HZSM-5, Ag/HZSM-5, Mo/HZSM-5, Zr/HZSM-5 and Ce/HZSM-5 reached 11.6%, 11.5%, 11.1%, 10.1%, and 8.8%, respectively. Carbon deposition formed by aromatic carbon/graphite carbon, pyrrole and pyridine compounds leads to deactivation of the catalyst.
抗生素发酵残渣(AR)是制药工业产生的危险有机废物。AR 可以通过快速热解有效地转化为生物油,但由于其高氮含量限制了生物油作为燃料资源的前景。为了进一步降低 AR 生物油的氮含量,我们研究了在快速热解条件下用 M/HZSM-5(M=Fe、Co、Ni、Cu、Zn、Zr、Mo、Ag 和 Ce)金属催化剂从青霉素发酵残渣(PR)生物油中催化脱除 N 和 O。此外,分析了混合和分离催化形式对催化升级的影响,并特别研究了在分离催化条件下催化剂本身在热解前后的变化。我们的结果表明,新鲜催化剂中的金属元素将以氧化物、离子和简单金属的形式存在。在催化热解过程中,热解气体原位还原使催化剂中的一些离子金属(如 Co、Cu 和 Ag)转化为氧化物,一些金属氧化物还原为简单金属或亚氧化物(包括 Fe、Ni、Cu 和 Mo)。混合催化生物油中的 N 含量从 10.09wt%降低到 Zn/HZSM-5(6.98wt%)、Co/HZSM-5(7.1wt%)、Cu/HZSM-5(7.18wt%)和 Ce/HZSM-5(7.18wt%)。我们还观察到 Ag/HZSM-5(3.75wt%)、Mo/HZSM-5(6.86wt%)、Ce/HZSM-5(8.39wt%)和 Fe/HZSM-5(8.54wt%)在分离催化生物油中显著降低了 O 含量(9.77wt%)。Ni/HZSM-5 催化剂可以将生物油中的有机酸含量从 22.9%降低到 10.8%。分离催化方法还促进了生物油中碳氢化合物的增加:Zn/HZSM-5、Ag/HZSM-5、Mo/HZSM-5、Zr/HZSM-5 和 Ce/HZSM-5 分别达到 11.6%、11.5%、11.1%、10.1%和 8.8%。芳香碳/石墨碳、吡咯和吡啶化合物形成的积碳导致催化剂失活。