Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
CNR Institute of Nanoscience, Via Campi 213/A, I-41125 Modena, Italy.
J Chem Phys. 2021 Feb 28;154(8):084105. doi: 10.1063/5.0038913.
Infrared spectroscopy is a widely used technique to characterize protein structures and protein mediated processes. While the amide I band provides information on proteins' secondary structure, amino acid side chains are used as infrared probes for the investigation of protein reactions and local properties. In this paper, we use a hybrid quantum mechanical/classical molecular dynamical approach based on the perturbed matrix method to compute the infrared band due to the C=O stretching mode of amide-containing side chains. We calculate, at first, the infrared band of zwitterionic glutamine in water and obtain results in very good agreement with the experimental data. Then, we compute the signal arising from glutamine side chains in a microcrystal of the yeast prion Sup35-derived peptide, GNNQQNY, with a fibrillar structure. The infrared bands obtained by selective isotopic labeling of the two glutamine residues, Q4 and Q5, of each peptide were experimentally used to investigate the local hydration in the fibrillar microcrystal. The experimental spectra of the two glutamine residues, which experience different hydration environments, feature different spectral signals that are well reproduced by the corresponding calculated spectra. In addition, the analysis of the simulated spectra clarifies the molecular origin of the experimentally observed spectroscopic differences that arise from the different local electric field experienced by the two glutamine residues, which is, in turn, determined by a different hydrogen bonding pattern.
红外光谱是一种广泛用于描述蛋白质结构和蛋白质介导过程的技术。酰胺 I 带提供了有关蛋白质二级结构的信息,而氨基酸侧链则被用作研究蛋白质反应和局部性质的红外探针。在本文中,我们使用基于微扰矩阵法的混合量子力学/经典分子动力学方法来计算含酰胺侧链的 C=O 伸缩模式的红外带。我们首先计算了在水中的两性离子谷氨酰胺的红外带,并且得到的结果与实验数据非常吻合。然后,我们计算了具有纤维状结构的酵母朊病毒 Sup35 衍生肽 GNNQQNY 微晶中谷氨酰胺侧链的信号。通过对每个肽的两个谷氨酰胺残基 Q4 和 Q5 的选择性同位素标记获得的红外带被实验用于研究纤维状微晶中的局部水合作用。经历不同水合环境的两个谷氨酰胺残基的实验光谱具有不同的光谱信号,这些信号与相应的计算光谱很好地吻合。此外,对模拟光谱的分析阐明了实验观察到的光谱差异的分子起源,这些差异源于两个谷氨酰胺残基所经历的不同局部电场,而局部电场则由不同的氢键模式决定。