Fatthallah Nesreen A, Selim Mohamed S, El Safty Sherif A, Selim Mahmoud M, Shenashen Mohamed A
National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Processes Development Department, EPRI, Nasr City, 11727, Cairo, Egypt.
National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt.
Mater Sci Eng C Mater Biol Appl. 2021 Mar;122:111844. doi: 10.1016/j.msec.2020.111844. Epub 2021 Jan 6.
Here, we study the effect of hierarchical and one-dimensional (1D) metal oxide nanorods (H-NRs) such as γ-AlO, β-MnO, and ZnO as microbial inhibitors on the antimicrobial efficiency in aqueous solution. These microbial inhibitors are fabricated in a diverse range of nanoscale hierarchical morphologies and geometrical shapes that have effective surface exposure, and well-defined 1D orientation. For instance, γ-AlO H-NRs with 20 nm width and ˂0.5 μm length are grown dominantly in the [400] direction. The wurtzite structures of β-MnO H-NRs with 30 nm width and 0.5-1 μm length are preferentially oriented in the [100] direction. Longitudinal H-NRs with a width of 40 nm and length of 1 μm are controlled with ZnO wurtzite structure and grown in [0001] direction. The antimicrobial efficiency of H-NRs was evaluated through experimental assays using a set of microorganisms (Gram-positive Staphylococcus aureus, Bacillus thuriginesis, and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Minimal inhibitory and minimum bactericidal concentrations (MIC and MBC) were determined. These 1D H-NRs exhibited antibacterial activity against all the used strains. The active surface exposure sites of H-NRs play a key role in the strong interaction with the thiol units of vital bacterial enzymes, leading to microbial inactivation. Our finding indicates that the biological effect of the H-NR surface planes on microbial inhibition is decreased in the order of [400]-γ-AlO > [100]-β-MnO > [0001]-ZnO geometrics. The lowest key values including MIC (1.146 and 0.250 μg/mL), MBC (1.146, 0.313 μg/mL), and MIC/MFC (0.375 and 0.375 μg/mL) are achieved for [400]-plane γ-AlO surfaces when tested against Gram-positive and -negative bacteria, respectively. Among the three H-NRs, the smallest diameter size and length, the largest surface area, and the active exposure [400] direction of γ-AlO H-NRs could provide the highest microbial inactivation.
在此,我们研究了诸如γ -AlO、β -MnO和ZnO等分级一维(1D)金属氧化物纳米棒(H -NRs)作为微生物抑制剂在水溶液中对抗菌效率的影响。这些微生物抑制剂具有多种纳米级分级形态和几何形状,具有有效的表面暴露和明确的一维取向。例如,宽度为20 nm、长度小于0.5μm的γ -AlO H -NRs主要沿[400]方向生长。宽度为30 nm、长度为0.5 - 1μm的β -MnO H -NRs的纤锌矿结构优先沿[100]方向取向。宽度为40 nm、长度为1μm的纵向H -NRs具有ZnO纤锌矿结构,并沿[0001]方向生长。通过使用一组微生物(革兰氏阳性金黄色葡萄球菌、苏云金芽孢杆菌和枯草芽孢杆菌)和革兰氏阴性(大肠杆菌和铜绿假单胞菌)细菌进行实验测定来评估H -NRs的抗菌效率。确定了最小抑菌浓度和最小杀菌浓度(MIC和MBC)。这些一维H -NRs对所有使用的菌株均表现出抗菌活性。H -NRs的活性表面暴露位点在与重要细菌酶的硫醇单元的强相互作用中起关键作用,导致微生物失活。我们的研究结果表明,H -NR表面平面在微生物抑制方面的生物学效应按[400]-γ -AlO > [100]-β -MnO > [0001]-ZnO几何形状的顺序降低。当分别针对革兰氏阳性和阴性细菌进行测试时,[400]平面γ -AlO表面实现了最低的关键值,包括MIC(1.146和0.250μg/mL)、MBC(1.146、0.313μg/mL)以及MIC/MFC(0.375和0.375μg/mL)。在这三种H -NRs中,γ -AlO H -NRs最小的直径尺寸和长度、最大的表面积以及活性暴露的[400]方向能够提供最高的微生物失活率。