Suppr超能文献

核壳型双介孔纳米笼 Fe@Fe 作为一种潜在的多功能诊疗一体化纳米平台用于多模态成像指导下的光热-光动力-化学动力学协同治疗。

Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment.

机构信息

College of Energy, Xiamen University, Xiamen 361002, Fujian, China.

Fujian Research Center for Nuclear Engineering, Xiamen 361102, Fujian, China.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10728-10740. doi: 10.1021/acsami.0c21579. Epub 2021 Mar 1.

Abstract

Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.

摘要

光热/光动力治疗(PTT/PDT)和协同治疗策略通常受到青睐,因为与化疗和手术治疗相比,它们的副作用和侵入性较小。然而,尽管开发了具有良好肿瘤抑制效果的大多数 PTT/PDT 材料,但光敏剂和光热剂仍存在一些缺点,例如低稳定性和低光子效率,这极大地限制了它们的进一步应用。因此,在本研究中,设计了一种具有良好光子稳定性和协同治疗功能的新型基于铋的异核壳半导体纳米材料 BiNS-Fe@Fe。一方面,具有高原子数的 BiNS-Fe@Fe 表现出良好的 X 射线吸收、增强的磁共振(MR)T 加权成像和强光声成像(PAI)信号。此外,异核壳提供了强大的障碍,以降低电子-空穴对的复合,当用可见-近红外光照射时,诱导大量活性氧(ROS)的产生。同时,在肿瘤微环境中,芬顿反应可以进一步增加 ROS 的产生。此外,该材料还具有出色的化学动力学治疗潜力。特别是,通过操纵表面修饰 Fe 可以实现高的光热转换效率(η=37.9%),从而实现肿瘤消融。总之,BiNS-Fe@Fe 可以实现 ROS 的显著利用、高光热转换规律和良好的化学动力学活性,突出了肿瘤的多模态治疗潜力策略,为肿瘤的治疗应用提供了一个潜在的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验