Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China.
Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China.
Sci Total Environ. 2021 Jul 1;776:145922. doi: 10.1016/j.scitotenv.2021.145922. Epub 2021 Feb 18.
Blending lignocellulosic wastes (such as cornstalk, CS) into sewage sludge (SS) for hydrothermal carbonization (HTC) could contribute to the importance of the hydrothermal solid product (hydrochar) as a substitute for fossil fuel. However, the interactions between SS and CS changed the fate of Nitrogen (N), affecting the clean combustion utilization of hydrochar. This study focused on the influence of SS-CS interactions on the redistribution and migration behavior of N during the co-HTC process by tuning the mass ratio of SS to CS (SS:CS), reaction temperature, and residence time. Under the hydrothermal condition of 220 °C, 2 h, and SS:CS = 1:1, the high heating value of hydrochar and the energy recovery efficiency (ERE) respectively reached 15.89 MJ/kg and 71.19%. Further raising the temperature to 250 °C, the hydrochar was enhanced in the coalification degree, whereas ERE decreased to 61.86%. Part of the amino-N in sludge organics was fractured during the co-HTC process and reacted with carbohydrate and intermediate products, such as 5-hydroxymethylfurfural, which degraded from CS, to generate heterocyclic-N compounds (including pyridine, pyrrole, and pyrazine). The remaining amino-N formed pyridine-N, pyrrole-N, and quaternary-N through various solid-solid conversions. The heterocyclic-N polymerized and formed melanoidins, which thereafter polymerized with aromatic clusters to form the N-containing polyaromatic char. Therefore, the N retention rate (NRR) was enhanced and showed a synergistic effect. NRR was increased by raising the proportion of CS or extending time, reaching 57.02% at SS:CS = 1:1 and 8 h. Conversely, rising temperatures resulted in a downward trend of NRR with a phased increase at 220 °C-250 °C.
将木质纤维素废物(如玉米秸秆,CS)混入污水污泥(SS)中进行水热碳化(HTC),可以促进水热固体产物(水炭)作为化石燃料替代品的重要性。然而,SS 和 CS 之间的相互作用改变了氮(N)的命运,影响了水炭的清洁燃烧利用。本研究通过调节 SS 与 CS 的质量比(SS:CS)、反应温度和停留时间,重点研究了 SS-CS 相互作用对共 HTC 过程中 N 的再分配和迁移行为的影响。在 220°C、2 小时和 SS:CS=1:1 的水热条件下,水炭的高热值和能量回收效率(ERE)分别达到 15.89 MJ/kg 和 71.19%。进一步将温度提高到 250°C,水炭的煤化程度增强,而 ERE 降低至 61.86%。部分污泥有机物中的氨基-N 在共 HTC 过程中断裂,并与碳水化合物和中间产物(如从 CS 降解而来的 5-羟甲基糠醛)反应,生成杂环-N 化合物(包括吡啶、吡咯和吡嗪)。剩余的氨基-N 通过各种固-固转化形成吡啶-N、吡咯-N 和季铵-N。杂环-N 聚合形成类黑素,随后与芳族簇聚合形成含 N 的多环芳烃炭。因此,氮保留率(NRR)增强并表现出协同效应。通过提高 CS 的比例或延长时间,NRR 增加,在 SS:CS=1:1 和 8 小时时达到 57.02%。相反,升高温度导致 NRR 呈下降趋势,在 220°C-250°C 时呈阶段性增加。