Perner Verena, Diddens Diddo, Otteny Fabian, Küpers Verena, Bieker Peter, Esser Birgit, Winter Martin, Kolek Martin
MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149 Münster, Germany.
Helmholtz Institute Münster (HI MS), IEK-12, Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12442-12453. doi: 10.1021/acsami.0c20012. Epub 2021 Mar 1.
Organic materials are promising candidates for next-generation battery systems. However, many organic battery materials suffer from high solubility in common battery electrolytes. Such solubility can be overcome by introducing tailored high-molecular-weight polymer structures, for example, by cross-linking, requiring enhanced synthetic efforts. We herein propose a different strategy by optimizing the battery electrolyte to obtain insolubility of non-cross-linked poly(3-vinyl--methylphenothiazine) (). Successive investigation and theoretical insights into carbonate-based electrolytes and their interplay with led to a strong decrease in the solubility of the redox polymer in ethylene carbonate/ethyl methyl carbonate (3:7) with 1 M LiPF. This allowed accessing its full theoretical specific capacity by changing the charge/discharge mechanism compared to previous reports. Through electrochemical, spectroscopic, and theoretical investigations, we show that changing the constituents of the electrolyte significantly influences the interactions between the electrolyte molecules and the redox polymer . Our study demonstrates that choosing the ideal electrolyte composition without chemical modification of the active material is a successful strategy to enhance the performance of organic polymer-based batteries.
有机材料是下一代电池系统的理想候选材料。然而,许多有机电池材料在常见的电池电解质中具有高溶解性。这种溶解性可以通过引入定制的高分子量聚合物结构来克服,例如通过交联,但这需要增加合成工作量。我们在此提出一种不同的策略,即通过优化电池电解质来实现非交联聚(3-乙烯基-甲基吩噻嗪)( )的不溶性。对碳酸酯基电解质及其与 的相互作用进行的连续研究和理论洞察表明,在含有1 M LiPF的碳酸乙烯酯/碳酸甲乙酯(3:7)中,氧化还原聚合物的溶解度大幅降低。与之前的报道相比,这使得通过改变充放电机制能够充分利用其理论比容量。通过电化学、光谱和理论研究,我们表明改变电解质的成分会显著影响电解质分子与氧化还原聚合物 之间的相互作用。我们的研究表明,在不对活性材料进行化学改性的情况下选择理想的电解质组成是提高有机聚合物基电池性能的成功策略。