Sun Huaqian, Zhang Yaoyuan, Li Yuming, Song Weiyu, Huan Qing, Lu Junling, Gao Yang, Han Shanlei, Gao Manglai, Ma Yingjie, Yu Hongjian, Wang Yajun, Cui Guoqing, Zhao Zhen, Xu Chunming, Jiang Guiyuan
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, China.
Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
Nanoscale. 2021 Mar 12;13(9):5103-5114. doi: 10.1039/d1nr00302j.
Efficient conversion of light alkanes is of essential significance for enhancing the utilization efficiency of resources and exploring the activation and evolution regulation of C-C and C-H bonds in stable molecules. The processes are often executed with catalysts under harsh conditions. The olefin yield and metal stability have been the long-standing concerns. Herein, we report a facile strategy of constructing a bifunctional Pt/HZSM-5-based catalyst by two-step atomic layer deposition (ALD) to achieve a high light olefin formation rate of 0.48 mmol gcat-1·min-1 in the catalytic cracking of n-butane at 600 °C, which is ∼2.2 times higher than that of the conventional Pt/HZSM-5 catalyst (0.22 mmol gcat-1·min-1). Moreover, the bifunctional Pt/HZSM-5-based catalyst exhibited outstanding recyclability and excellent metal stability against sintering in comparison with conventional Pt/HZSM-5. Detailed microscopic and spectroscopic characterization studies demonstrate that the metal oxide (TiO2 or Al2O3) coating not only prevents the metal from high-temperature sintering, but also regulates the proportion of coordinately unsaturated platinum surface atoms. Theoretical calculations further confirm the preference of nucleation of TiO2 or Al2O3 on coordinately unsaturated platinum sites, which in turn modulates the bifunctional dehydrogenation-cracking pathway to improve the olefin formation rate.
轻质烷烃的高效转化对于提高资源利用效率以及探索稳定分子中碳 - 碳和碳 - 氢键的活化与演化调控具有至关重要的意义。这些过程通常在苛刻条件下借助催化剂来进行。烯烃产率和金属稳定性一直是长期关注的问题。在此,我们报道了一种通过两步原子层沉积(ALD)构建双功能Pt/HZSM - 5基催化剂的简便策略,在600℃下正丁烷催化裂化中实现了0.48 mmol gcat-1·min-1的高光烯烃生成速率,这比传统Pt/HZSM - 5催化剂(0.22 mmol gcat-1·min-1)高出约2.2倍。此外,与传统Pt/HZSM - 5相比,双功能Pt/HZSM - 5基催化剂表现出出色的可回收性以及优异的抗烧结金属稳定性。详细的微观和光谱表征研究表明,金属氧化物(TiO2或Al2O3)涂层不仅能防止金属高温烧结,还能调节配位不饱和铂表面原子的比例。理论计算进一步证实了TiO2或Al2O3在配位不饱和铂位点上成核的偏好性,这反过来又调节了双功能脱氢 - 裂化途径以提高烯烃生成速率。