Suppr超能文献

钾矾焙烧锂辉石的两步反应机理。

Two-Step Reaction Mechanism of Roasting Spodumene with Potassium Sulfate.

机构信息

Geochemistry and Mineral Sciences, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch 6150, Western Australia.

College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, Western Australia.

出版信息

Inorg Chem. 2021 Mar 15;60(6):3620-3625. doi: 10.1021/acs.inorgchem.0c03125. Epub 2021 Mar 2.

Abstract

The conventional process of lithium extraction from α-spodumene (LiAlSiO) is energy-intensive and associated with high byproduct management cost. Here, we investigate an alternative process route that uses potassium sulfate (KSO) to extract lithium while producing leucite (KAlSiO), a slow release fertilizer. Presenting the first-ever in situ record of the reaction of α-spodumene with potassium sulfate, we use synchrotron X-ray diffraction (XRD) and differential scanning calorimetry (DSC) to document the reaction sequence during prograde heating. From 780 °C, we observe a broad endothermic DSC peak, abnormal expansion of the α-spodumene structure, and an increase in α-(Li, K)-spodumene peak intensity during heating with potassium sulfate, indicative of the exchange between lithium and potassium in the spodumene structure. When 11 ± 1% K occupancy in the M2 site of α-(Li, K)-spodumene is reached, the mechanism changes from ion exchange to a reconstructive transformation of α(Li, K)-spodumene into leucite, evidenced by a decrease in α-spodumene and potassium sulfate abundance concurring with formation of leucite over a narrow temperature range between 850 and 890 °C. The increasing background intensity in synchrotron XRD above 870 °C suggests that a lithium sulfate-bearing melt starts to form once >90% of α-spodumene has been converted during the reaction. This fundamental understanding of the reaction between α-spodumene and potassium sulfate will enable future development of lithium extraction routes using additives to significantly decrease energy intensity and to produce marketable byproducts from α-spodumene.

摘要

从 α-锂辉石(LiAlSiO)中提取锂的传统工艺是能源密集型的,并且与高副产物管理成本有关。在这里,我们研究了一种替代工艺路线,该路线使用硫酸钾(KSO)提取锂,同时生产出白榴石(KAlSiO),这是一种缓释肥料。我们首次在原地记录了 α-锂辉石与硫酸钾的反应,使用同步加速器 X 射线衍射(XRD)和差示扫描量热法(DSC)记录了升温过程中的反应序列。从 780°C 开始,我们观察到一个宽的吸热 DSC 峰、α-锂辉石结构的异常膨胀以及在与硫酸钾加热过程中α-(Li,K)-锂辉石峰强度的增加,这表明锂辉石结构中锂和钾之间的交换。当 α-(Li,K)-锂辉石中 M2 位的 K 占有率达到 11±1%时,机制从离子交换转变为α-(Li,K)-锂辉石向白榴石的重构转变,这一转变的证据是α-锂辉石和硫酸钾的丰度随着白榴石的形成而降低,在 850 和 890°C 之间的狭窄温度范围内发生。在 870°C 以上,同步加速器 XRD 中的背景强度增加表明,一旦反应过程中超过 90%的α-锂辉石被转化,就会开始形成含有锂硫酸盐的熔体。对α-锂辉石与硫酸钾反应的这种基本理解将使未来能够开发使用添加剂的锂提取途径,从而显著降低能源强度,并从α-锂辉石中生产出有市场价值的副产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验